Biblio

Found 1295 results

Filters: Keyword is compositionality  [Clear All Filters]
2021-09-21
Wang, Yuzheng, Jimenez, Beatriz Y., Arnold, David P..  2020.  \$100-\textbackslashtextbackslashmu\textbackslashtextbackslashmathrmm\$-Thick High-Energy-Density Electroplated CoPt Permanent Magnets. 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS). :558–561.
This paper reports electroplated CoPt permanent magnets samples yielding thicknesses up to 100 μm, deposition rates up to 35 μm/h, coercivities up to 1000 kA/m (1.25 T), remanences up to 0.8 T, and energy products up to 77 kJ/m3. The impact of electroplating bath temperature and glycine additives are systematically studied. Compared to prior work, these microfabricated magnets not only exhibit up to 10X increase in thickness without sacrificing magnetic performance, but also improve the areal magnetic energy density by 2X. Using a thick removeable SU-8 mold, these high-performing thick-film magnets are intended for magnetic microactuators, magnetic field sensors, energy conversion devices, and more.
2021-04-27
Aktepe, S., Varol, C., Shashidhar, N..  2020.  2020 8th International Symposium on Digital Forensics and Security (ISDFS). 2020 8th International Symposium on Digital Forensics and Security (ISDFS). :1—5.
Cryptocurrencies are the digital currencies designed to replace the regular cash money while taking place in our daily lives especially for the last couple of years. Mining cryptocurrencies are one of the popular ways to have them and make a profit due to unstable values in the market. This attracts attackers to utilize malware on internet users' computer resources, also known as cryptojacking, to mine cryptocurrencies. Cryptojacking started to be a major issue in the internet world. In this case, we developed MiNo, a web browser add-on application to detect these malicious mining activities running without the user's permission or knowledge. This add-on provides security and efficiency for the computer resources of the internet users. MiNo designed and developed with double-layer protection which makes it ahead of its competitors in the market.
2021-03-22
Sai, C. C., Prakash, C. S., Jose, J., Mana, S. C., Samhitha, B. K..  2020.  Analysing Android App Privacy Using Classification Algorithm. 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184). :551–555.
The interface permits the client to scan for a subjective utility on the Play Store; the authorizations posting and the protection arrangement are then routinely recovered, on all events imaginable. The client has then the capability of choosing an interesting authorization, and a posting of pertinent sentences are separated with the guide of the privateer's inclusion and introduced to them, alongside a right depiction of the consent itself. Such an interface allows the client to rapidly assess the security-related dangers of an Android application, by utilizing featuring the pertinent segments of the privateer's inclusion and by introducing helpful data about shrewd authorizations. A novel procedure is proposed for the assessment of privateer's protection approaches with regards to Android applications. The gadget actualized widely facilitates the way toward understanding the security ramifications of placing in 1/3 birthday celebration applications and it has just been checked in a situation to feature troubling examples of uses. The gadget is created in light of expandability, and correspondingly inclines in the strategy can without trouble be worked in to broaden the unwavering quality and adequacy. Likewise, if your application handles non-open or delicate individual information, it would be ideal if you also allude to the extra necessities in the “Individual and Sensitive Information” territory underneath. These Google Play necessities are notwithstanding any prerequisites endorsed by method for material security or data assurance laws. It has been proposed that, an individual who needs to perform the establishment and utilize any 1/3 festival application doesn't perceive the significance and which methods for the consents mentioned by method for an application, and along these lines sincerely gives all the authorizations as a final product of which unsafe applications furthermore get set up and work their malevolent leisure activity in the rear of the scene.
2020-12-14
Willcox, G., Rosenberg, L., Domnauer, C..  2020.  Analysis of Human Behaviors in Real-Time Swarms. 2020 10th Annual Computing and Communication Workshop and Conference (CCWC). :0104–0109.
Many species reach group decisions by deliberating in real-time systems. This natural process, known as Swarm Intelligence (SI), has been studied extensively in a range of social organisms, from schools of fish to swarms of bees. A new technique called Artificial Swarm Intelligence (ASI) has enabled networked human groups to reach decisions in systems modeled after natural swarms. The present research seeks to understand the behavioral dynamics of such “human swarms.” Data was collected from ten human groups, each having between 21 and 25 members. The groups were tasked with answering a set of 25 ordered ranking questions on a 1-5 scale, first independently by survey and then collaboratively as a real-time swarm. We found that groups reached significantly different answers, on average, by swarm versus survey ( p=0.02). Initially, the distribution of individual responses in each swarm was little different than the distribution of survey responses, but through the process of real-time deliberation, the swarm's average answer changed significantly ( ). We discuss possible interpretations of this dynamic behavior. Importantly, the we find that swarm's answer is not simply the arithmetic mean of initial individual “votes” ( ) as in a survey, suggesting a more complex mechanism is at play-one that relies on the time-varying behaviors of the participants in swarms. Finally, we publish a set of data that enables other researchers to analyze human behaviors in real-time swarms.
Cai, L., Hou, Y., Zhao, Y., Wang, J..  2020.  Application research and improvement of particle swarm optimization algorithm. 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :238–241.
Particle swarm optimization (PSO), as a kind of swarm intelligence algorithm, has the advantages of simple algorithm principle, less programmable parameters and easy programming. Many scholars have applied particle swarm optimization (PSO) to various fields through learning it, and successfully solved linear problems, nonlinear problems, multiobjective optimization and other problems. However, the algorithm also has obvious problems in solving problems, such as slow convergence speed, too early maturity, falling into local optimization in advance, etc., which makes the convergence speed slow, search the optimal value accuracy is not high, and the optimization effect is not ideal. Therefore, many scholars have improved the particle swarm optimization algorithm. Taking into account the improvement ideas proposed by scholars in the early stage and the shortcomings still existing in the improvement, this paper puts forward the idea of improving particle swarm optimization algorithm in the future.
2021-06-01
Chinchawade, Amit Jaykumar, Lamba, Onkar Singh.  2020.  Authentication Schemes and Security Issues in Internet Of Everything (IOE) Systems. 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN). :342–345.
Nowadays, Internet Of Everything (IOE) has demanded for a wide range of applications areas. IOE is started to replaces an Internet Of things (IOT). IOE is a combination of massive number of computing elements and sensors, people, processes and data through the Internet infrastructure. Device to Device communication and interfacing of Wireless Sensor network with IOE can makes any system as a Smart System. With the increased the use of Internet and Internet connected devices has opportunities for hackers to launch attacks on unprecedented scale and impact. The IOE can serve the varied security in the various sectors like manufacturing, agriculture, smart grid, payments, IoT gateways, healthcare and industrial ecosystems. To secure connections among people, process, data, and things, is a major challenge in Internet of Everything.. This paper focuses on various security Issues and Authentication Schemes in the IOE systems.
Zhang, Zichao, de Amorim, Arthur Azevedo, Jia, Limin, Pasareanu, Corina S..  2020.  Automating Compositional Analysis of Authentication Protocols. 2020 Formal Methods in Computer Aided Design (FMCAD). :113–118.
Modern verifiers for cryptographic protocols can analyze sophisticated designs automatically, but require the entire code of the protocol to operate. Compositional techniques, by contrast, allow us to verify each system component separately, against its own guarantees and assumptions about other components and the environment. Compositionality helps protocol design because it explains how the design can evolve and when it can run safely along other protocols and programs. For example, it might say that it is safe to add some functionality to a server without having to patch the client. Unfortunately, while compositional frameworks for protocol verification do exist, they require non-trivial human effort to identify specifications for the components of the system, thus hindering their adoption. To address these shortcomings, we investigate techniques for automated, compositional analysis of authentication protocols, using automata-learning techniques to synthesize assumptions for protocol components. We report preliminary results on the Needham-Schroeder-Lowe protocol, where our synthesized assumption was capable of lowering verification time while also allowing us to verify protocol variants compositionally.
2021-08-02
Liu, Gao, Dong, Huidong, Yan, Zheng.  2020.  B4SDC: A Blockchain System for Security Data Collection in MANETs. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Security-related data collection is an essential part for attack detection and security measurement in Mobile Ad Hoc Networks (MANETs). Due to no fixed infrastructure of MANETs, a detection node playing as a collector should discover available routes to a collection node for data collection. Notably, route discovery suffers from many attacks (e.g., wormhole attack), thus the detection node should also collect securityrelated data during route discovery and analyze these data for determining reliable routes. However, few literatures provide incentives for security-related data collection in MANETs, and thus the detection node might not collect sufficient data, which greatly impacts the accuracy of attack detection and security measurement. In this paper, we propose B4SDC, a blockchain system for security-related data collection in MANETs. Through controlling the scale of RREQ forwarding in route discovery, the collector can constrain its payment and simultaneously make each forwarder of control information (namely RREQs and RREPs) obtain rewards as much as possible to ensure fairness. At the same time, B4SDC avoids collusion attacks with cooperative receipt reporting, and spoofing attacks by adopting a secure digital signature. Based on a novel Proof-of-Stake consensus mechanism by accumulating stakes through message forwarding, B4SDC not only provides incentives for all participating nodes, but also avoids forking and ensures high efficiency and real decentralization at the same time. We analyze B4SDC in terms of incentives and security, and evaluate its performance through simulations. The thorough analysis and experimental results show the efficacy and effectiveness of B4SDC.
2021-03-15
Bresch, C., Lysecky, R., Hély, D..  2020.  BackFlow: Backward Edge Control Flow Enforcement for Low End ARM Microcontrollers. 2020 Design, Automation Test in Europe Conference Exhibition (DATE). :1606–1609.
This paper presents BackFlow, a compiler-based toolchain that enforces indirect backward edge control flow integrity for low-end ARM Cortex-M microprocessors. BackFlow is implemented within the Clang/LLVM compiler and supports the ARM instruction set and its subset Thumb. The control flow integrity generated by the compiler relies on a bitmap, where each set bit indicates a valid pointer destination. The efficiency of the framework is benchmarked using an STM32 NUCLEO F446RE microcontroller. The obtained results show that the control flow integrity solution incurs an execution time overhead ranging from 1.5 to 4.5%.
2021-05-18
Tai, Zeming, Washizaki, Hironori, Fukazawa, Yoshiaki, Fujimatsu, Yurie, Kanai, Jun.  2020.  Binary Similarity Analysis for Vulnerability Detection. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :1121–1122.
Binary similarity has been widely used in function recognition and vulnerability detection. How to define a proper similarity is the key element in implementing a fast detection method. We proposed a scalable method to detect binary vulnerabilities based on similarity. Procedures lifted from binaries are divided into several comparable strands by data dependency, and those strands are transformed into a normalized form by our tool named VulneraBin, so that similarity can be determined between two procedures through a hash value comparison. The low computational complexity allows semantically equivalent code to be identified in binaries compiled from million lines of source code in a fast and accurate way.
2021-06-01
Xu, Lei, Gao, Zhimin, Fan, Xinxin, Chen, Lin, Kim, Hanyee, Suh, Taeweon, Shi, Weidong.  2020.  Blockchain Based End-to-End Tracking System for Distributed IoT Intelligence Application Security Enhancement. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1028–1035.
IoT devices provide a rich data source that is not available in the past, which is valuable for a wide range of intelligence applications, especially deep neural network (DNN) applications that are data-thirsty. An established DNN model provides useful analysis results that can improve the operation of IoT systems in turn. The progress in distributed/federated DNN training further unleashes the potential of integration of IoT and intelligence applications. When a large number of IoT devices are deployed in different physical locations, distributed training allows training modules to be deployed to multiple edge data centers that are close to the IoT devices to reduce the latency and movement of large amounts of data. In practice, these IoT devices and edge data centers are usually owned and managed by different parties, who do not fully trust each other or have conflicting interests. It is hard to coordinate them to provide end-to-end integrity protection of the DNN construction and application with classical security enhancement tools. For example, one party may share an incomplete data set with others, or contribute a modified sub DNN model to manipulate the aggregated model and affect the decision-making process. To mitigate this risk, we propose a novel blockchain based end-to-end integrity protection scheme for DNN applications integrated with an IoT system in the edge computing environment. The protection system leverages a set of cryptography primitives to build a blockchain adapted for edge computing that is scalable to handle a large number of IoT devices. The customized blockchain is integrated with a distributed/federated DNN to offer integrity and authenticity protection services.
2021-04-27
Hammoud, O. R., Tarkhanov, I. A..  2020.  Blockchain-based open infrastructure for URL filtering in an Internet browser. 2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT). :1—4.
This research is dedicated to the development of a prototype of open infrastructure for users’ internet traffic filtering on a browser level. We described the advantages of a distributed approach in comparison with current centralized solutions. Besides, we suggested a solution to define the optimum size for a URL storage block in Ethereum network. This solution may be used for the development of infrastructure of DApps applications on Ethereum network in future. The efficiency of the suggested approach is supported by several experiments.
2021-08-05
Ren, Xiaoli, Li, Xiaoyong, Deng, Kefeng, Ren, Kaijun, Zhou, Aolong, Song, Junqiang.  2020.  Bringing Semantics to Support Ocean FAIR Data Services with Ontologies. 2020 IEEE International Conference on Services Computing (SCC). :30—37.
With the increasing attention to ocean and the development of data-intensive sciences, a large amount of ocean data has been acquired by various observing platforms and sensors, which poses new challenges to data management and utilization. Typically, nowadays we target to move ocean data management toward the FAIR principles of being findable, accessible, interoperable, and reusable. However, the data produced and managed by different organizations with wide diversity, various structures and increasing volume make it hard to be FAIR, and one of the most critical reason is the lack of unified data representation and publication methods. In this paper, we propose novel techniques to try to solve the problem by introducing semantics with ontologies. Specifically, we first propose a unified semantic model named OEDO to represent ocean data by defining the concepts of ocean observing field, specifying the relations between the concepts, and describing the properties with ocean metadata. Then, we further optimize the state-of-the-art quick service query list (QSQL) data structure, by extending the domain concepts with WordNet to improve data discovery. Moreover, based on the OEDO model and the optimized QSQL, we propose an ocean data service publishing method called DOLP to improve data discovery and data access. Finally, we conduct extensive experiments to demonstrate the effectiveness and efficiency of our proposals.
2021-03-15
Azahari, A. M., Ahmad, A., Rahayu, S. B., Halip, M. H. Mohamed.  2020.  CheckMyCode: Assignment Submission System with Cloud-Based Java Compiler. 2020 8th International Conference on Information Technology and Multimedia (ICIMU). :343–347.
Learning programming language of Java is a basic part of the Computer Science and Engineering curriculum. Specific Java compiler is a requirement for writing and convert the writing code to executable format. However, some local installed Java compiler is suffering from compatibility, portability and storage space issues. These issues sometimes affect student-learning interest and slow down the learning process. This paper is directed toward the solution for such problems, which offers a new programming assignment submission system with cloud-based Java compiler and is known as CheckMyCode. Leveraging cloud-computing technology in terms of its availability, prevalence and affordability, CheckMyCode implements Java cloud-based programming compiler as a part of the assignment management system. CheckMyCode system is a cloud-based system that allows both main users, which are a lecturer and student to access the system via a browser on PC or smart devices. Modules of submission assignment system with cloud compiler allow lecturer and student to manage Java programming task in one platform. A framework, system module, main user and feature of CheckMyCode are presented. Also, taking into account are the future study/direction and new enhancement of CheckMyCode.
2021-02-10
Hou, N., Zheng, Y..  2020.  CloakLoRa: A Covert Channel over LoRa PHY. 2020 IEEE 28th International Conference on Network Protocols (ICNP). :1—11.
This paper describes our design and implementation of a covert channel over LoRa physical layer (PHY). LoRa adopts a unique modulation scheme (chirp spread spectrum (CSS)) to enable long range communication at low-power consumption. CSS uses the initial frequencies of LoRa chirps to differentiate LoRa symbols, while simply ignoring other RF parameters (e.g., amplitude and phase). Our study reveals that the LoRa physical layer leaves sufficient room to build a covert channel by embedding covert information with a modulation scheme orthogonal to CSS. To demonstrate the feasibility of building a covert channel, we implement CloakLoRa. CloakLoRa embeds covert information into a regular LoRa packet by modulating the amplitudes of LoRa chirps while keeping the frequency intact. As amplitude modulation is orthogonal to CSS, a regular LoRa node receives the LoRa packet as if no secret information is embedded into the packet. Such an embedding method is transparent to all security mechanisms at upper layers in current LoRaWAN. As such, an attacker can create an amplitude modulated covert channel over LoRa without being detected by current LoRaWAN security mechanism. We conduct comprehensive evaluations with COTS LoRa nodes and receive-only software defined radios and experiment results show that CloakLoRa can send covert information over 250m.
2021-03-15
Brauckmann, A., Goens, A., Castrillon, J..  2020.  ComPy-Learn: A toolbox for exploring machine learning representations for compilers. 2020 Forum for Specification and Design Languages (FDL). :1–4.
Deep Learning methods have not only shown to improve software performance in compiler heuristics, but also e.g. to improve security in vulnerability prediction or to boost developer productivity in software engineering tools. A key to the success of such methods across these use cases is the expressiveness of the representation used to abstract from the program code. Recent work has shown that different such representations have unique advantages in terms of performance. However, determining the best-performing one for a given task is often not obvious and requires empirical evaluation. Therefore, we present ComPy-Learn, a toolbox for conveniently defining, extracting, and exploring representations of program code. With syntax-level language information from the Clang compiler frontend and low-level information from the LLVM compiler backend, the tool supports the construction of linear and graph representations and enables an efficient search for the best-performing representation and model for tasks on program code.
2021-03-22
Kellogg, M., Schäf, M., Tasiran, S., Ernst, M. D..  2020.  Continuous Compliance. 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). :511–523.
Vendors who wish to provide software or services to large corporations and governments must often obtain numerous certificates of compliance. Each certificate asserts that the software satisfies a compliance regime, like SOC or the PCI DSS, to protect the privacy and security of sensitive data. The industry standard for obtaining a compliance certificate is an auditor manually auditing source code. This approach is expensive, error-prone, partial, and prone to regressions. We propose continuous compliance to guarantee that the codebase stays compliant on each code change using lightweight verification tools. Continuous compliance increases assurance and reduces costs. Continuous compliance is applicable to any source-code compliance requirement. To illustrate our approach, we built verification tools for five common audit controls related to data security: cryptographically unsafe algorithms must not be used, keys must be at least 256 bits long, credentials must not be hard-coded into program text, HTTPS must always be used instead of HTTP, and cloud data stores must not be world-readable. We evaluated our approach in three ways. (1) We applied our tools to over 5 million lines of open-source software. (2) We compared our tools to other publicly-available tools for detecting misuses of encryption on a previously-published benchmark, finding that only ours are suitable for continuous compliance. (3) We deployed a continuous compliance process at AWS, a large cloud-services company: we integrated verification tools into the compliance process (including auditors accepting their output as evidence) and ran them on over 68 million lines of code. Our tools and the data for the former two evaluations are publicly available.
2021-06-01
Chen, Zhenfang, Wang, Peng, Ma, Lin, Wong, Kwan-Yee K., Wu, Qi.  2020.  Cops-Ref: A New Dataset and Task on Compositional Referring Expression Comprehension. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :10083–10092.
Referring expression comprehension (REF) aims at identifying a particular object in a scene by a natural language expression. It requires joint reasoning over the textual and visual domains to solve the problem. Some popular referring expression datasets, however, fail to provide an ideal test bed for evaluating the reasoning ability of the models, mainly because 1) their expressions typically describe only some simple distinctive properties of the object and 2) their images contain limited distracting information. To bridge the gap, we propose a new dataset for visual reasoning in context of referring expression comprehension with two main features. First, we design a novel expression engine rendering various reasoning logics that can be flexibly combined with rich visual properties to generate expressions with varying compositionality. Second, to better exploit the full reasoning chain embodied in an expression, we propose a new test setting by adding additional distracting images containing objects sharing similar properties with the referent, thus minimising the success rate of reasoning-free cross-domain alignment. We evaluate several state-of-the-art REF models, but find none of them can achieve promising performance. A proposed modular hard mining strategy performs the best but still leaves substantial room for improvement.
2021-02-10
Huang, H., Wang, X., Jiang, Y., Singh, A. K., Yang, M., Huang, L..  2020.  On Countermeasures Against the Thermal Covert Channel Attacks Targeting Many-core Systems. 2020 57th ACM/IEEE Design Automation Conference (DAC). :1—6.
Although it has been demonstrated in multiple studies that serious data leaks could occur to many-core systems thanks to the existence of the thermal covert channels (TCC), little has been done to produce effective countermeasures that are necessary to fight against such TCC attacks. In this paper, we propose a three-step countermeasure to address this critical defense issue. Specifically, the countermeasure includes detection based on signal frequency scanning, positioning affected cores, and blocking based on Dynamic Voltage Frequency Scaling (DVFS) technique. Our experiments have confirmed that on average 98% of the TCC attacks can be detected, and with the proposed defense, the bit error rate of a TCC attack can soar to 92%, literally shutting down the attack in practical terms. The performance penalty caused by the inclusion of the proposed countermeasures is only 3% for an 8×8 system.
Ivanov, P., Baklanov, V., Dymova, E..  2020.  Covert Channels of Data Communication. 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :0557—0558.
The article is dedicated to covert channels of data communication in the protected operating system based on the Linux kernel with mandatory access control. The channel which is not intended by developers violates security policy and can lead to disclosure of confidential information. In this paper the covert storage channels are considered. Authors show opportunities to violate the secrecy policy in the protected operating system based on the Linux kernel experimentally. The first scenario uses time stamps of the last access to the files (“atime” stamp), the second scenario uses unreliable mechanism of the automatic login to the user session with another level of secrecy. Then, there are some recommendations to prevent these violations. The goal of this work is to analyze the methods of using covert channels, both previously known and new. The result of the article is recommendations allowing to eliminate security threats which can be embodied through covert channels.
2021-08-31
Chowdhury, Ritwik, Finney, Dale, Fischer, Normann, Taylor, Douglas.  2020.  CT sizing for generator and transformer protective relays. 15th International Conference on Developments in Power System Protection (DPSP 2020). :1–6.
Modern relays often have algorithms that enhance the security of elements that are otherwise susceptible to current transformer (CT) saturation. In this paper, we consider some of the similarities and differences between IEEE and IEC guidance on CT selection. We use CT models verified using high-current tests on a physical CT. Then using these models, we determine CT sizing guidelines and relay settings for a generator and transformer differential relay. Application guidance for generator black start is provided. Considerations such as remanence are discussed.
2021-08-05
Bogatu, Alex, Fernandes, Alvaro A. A., Paton, Norman W., Konstantinou, Nikolaos.  2020.  Dataset Discovery in Data Lakes. 2020 IEEE 36th International Conference on Data Engineering (ICDE). :709—720.
Data analytics stands to benefit from the increasing availability of datasets that are held without their conceptual relationships being explicitly known. When collected, these datasets form a data lake from which, by processes like data wrangling, specific target datasets can be constructed that enable value- adding analytics. Given the potential vastness of such data lakes, the issue arises of how to pull out of the lake those datasets that might contribute to wrangling out a given target. We refer to this as the problem of dataset discovery in data lakes and this paper contributes an effective and efficient solution to it. Our approach uses features of the values in a dataset to construct hash- based indexes that map those features into a uniform distance space. This makes it possible to define similarity distances between features and to take those distances as measurements of relatedness w.r.t. a target table. Given the latter (and exemplar tuples), our approach returns the most related tables in the lake. We provide a detailed description of the approach and report on empirical results for two forms of relatedness (unionability and joinability) comparing them with prior work, where pertinent, and showing significant improvements in all of precision, recall, target coverage, indexing and discovery times.
2021-05-05
Hallaji, Ehsan, Razavi-Far, Roozbeh, Saif, Mehrdad.  2020.  Detection of Malicious SCADA Communications via Multi-Subspace Feature Selection. 2020 International Joint Conference on Neural Networks (IJCNN). :1—8.
Security maintenance of Supervisory Control and Data Acquisition (SCADA) systems has been a point of interest during recent years. Numerous research works have been dedicated to the design of intrusion detection systems for securing SCADA communications. Nevertheless, these data-driven techniques are usually dependant on the quality of the monitored data. In this work, we propose a novel feature selection approach, called MSFS, to tackle undesirable quality of data caused by feature redundancy. In contrast to most feature selection techniques, the proposed method models each class in a different subspace, where it is optimally discriminated. This has been accomplished by resorting to ensemble learning, which enables the usage of multiple feature sets in the same feature space. The proposed method is then utilized to perform intrusion detection in smaller subspaces, which brings about efficiency and accuracy. Moreover, a comparative study is performed on a number of advanced feature selection algorithms. Furthermore, a dataset obtained from the SCADA system of a gas pipeline is employed to enable a realistic simulation. The results indicate the proposed approach extensively improves the detection performance in terms of classification accuracy and standard deviation.
2021-08-02
Billah, Mohammad Masum, Khan, Niaz Ahmed, Ullah, Mohammad Woli, Shahriar, Faisal, Rashid, Syed Zahidur, Ahmed, Md Razu.  2020.  Developing a Secured and Reliable Vehicular Communication System and Its Performance Evaluation. 2020 IEEE Region 10 Symposium (TENSYMP). :60–65.
The Ad-hoc Vehicular networks (VANET) was developed through the implementation of the concepts of ad-hoc mobile networks(MANET), which is swiftly maturing, promising, emerging wireless communication technology nowadays. Vehicular communication enables us to communicate with other vehicles and Roadside Infrastructure Units (RSU) to share information pertaining to the safety system, traffic analysis, Authentication, privacy, etc. As VANETs operate in an open wireless connectivity system, it increases permeable of variant type's security issues. Security concerns, however, which are either generally seen in ad-hoc networks or utterly unique to VANET, present significant challenges. Access Control List (ACL) can be an efficient feature to solve such security issues by permitting statements to access registered specific IP addresses in the network and deny statement unregistered IP addresses in the system. To establish such secured VANETs, the License number of the vehicle will be the Identity Number, which will be assigned via a DNS server by the Traffic Certification Authority (TCA). TCA allows registered vehicles to access the nearest two or more regions. For special vehicles, public access should be restricted by configuring ACL on a specific IP. Smart-card given by TCA can be used to authenticate a subscriber by checking previous records during entry to a new network area. After in-depth analysis of Packet Delivery Ratio (PDR), Packet Loss Ratio (PLR), Average Delay, and Handover Delay, this research offers more secure and reliable communication in VANETs.
2021-02-15
Myasnikova, N., Beresten, M. P., Myasnikova, M. G..  2020.  Development of Decomposition Methods for Empirical Modes Based on Extremal Filtration. 2020 Moscow Workshop on Electronic and Networking Technologies (MWENT). :1–4.
The method of extremal filtration implementing the decomposition of signals into alternating components is considered. The history of the method development is described, its mathematical substantiation is given. The method suggests signal decomposition based on the removal of known components locally determined by their extrema. The similarity of the method with empirical modes decomposition in terms of the result is shown, and their comparison is also carried out. The algorithm of extremal filtration has a simple mathematical basis that does not require the calculation of transcendental functions, which provides it with higher performance with comparable results. The advantages and disadvantages of the extremal filtration method are analyzed, and the possibility of its application for solving various technical problems is shown, i.e. the formation of diagnostic features, rapid analysis of signals, spectral and time-frequency analysis, etc. The methods for calculating spectral characteristics are described: by the parameters of the distinguished components, based on the approximation on the extrema by bell-shaped pulses. The method distribution in case of wavelet transform of signals is described. The method allows obtaining rapid evaluation of the frequencies and amplitudes (powers) of the components, which can be used as diagnostic features in solving problems of recognition, diagnosis and monitoring. The possibility of using extremal filtration in real-time systems is shown.