Biblio

Found 255 results

Filters: Keyword is Optimization  [Clear All Filters]
2021-07-07
Fan, Xiaosong.  2020.  Analysis of the Design of Digital Video Security Monitoring System Based on Bee Population Optimization Algorithm. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). :339–342.
With the concept of “wireless city”, 3G, WIFI and other wireless network coverages have become more extensive. Data transmission rate has achieved a qualitative leap, providing feasibility for the implementation of mobile video surveillance solutions. The mobile video monitoring system based on the bee population optimization algorithm proposed in this paper makes up for the defects of traditional network video surveillance, and according to the video surveillance system monitoring command, the optimal visual effect of the current state of the observed object can be rendered quickly and steadily through the optimization of the camera linkage model and simulation analysis.
2020-12-14
Cai, L., Hou, Y., Zhao, Y., Wang, J..  2020.  Application research and improvement of particle swarm optimization algorithm. 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :238–241.
Particle swarm optimization (PSO), as a kind of swarm intelligence algorithm, has the advantages of simple algorithm principle, less programmable parameters and easy programming. Many scholars have applied particle swarm optimization (PSO) to various fields through learning it, and successfully solved linear problems, nonlinear problems, multiobjective optimization and other problems. However, the algorithm also has obvious problems in solving problems, such as slow convergence speed, too early maturity, falling into local optimization in advance, etc., which makes the convergence speed slow, search the optimal value accuracy is not high, and the optimization effect is not ideal. Therefore, many scholars have improved the particle swarm optimization algorithm. Taking into account the improvement ideas proposed by scholars in the early stage and the shortcomings still existing in the improvement, this paper puts forward the idea of improving particle swarm optimization algorithm in the future.
2021-03-01
Sun, S. C., Guo, W..  2020.  Approximate Symbolic Explanation for Neural Network Enabled Water-Filling Power Allocation. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). :1–4.
Water-filling (WF) is a well-established iterative solution to optimal power allocation in parallel fading channels. Slow iterative search can be impractical for allocating power to a large number of OFDM sub-channels. Neural networks (NN) can transform the iterative WF threshold search process into a direct high-dimensional mapping from channel gain to transmit power solution. Our results show that the NN can perform very well (error 0.05%) and can be shown to be indeed performing approximate WF power allocation. However, there is no guarantee on the NN is mapping between channel states and power output. Here, we attempt to explain the NN power allocation solution via the Meijer G-function as a general explainable symbolic mapping. Our early results indicate that whilst the Meijer G-function has universal representation potential, its large search space means finding the best symbolic representation is challenging.
2021-05-18
Tai, Zeming, Washizaki, Hironori, Fukazawa, Yoshiaki, Fujimatsu, Yurie, Kanai, Jun.  2020.  Binary Similarity Analysis for Vulnerability Detection. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :1121–1122.
Binary similarity has been widely used in function recognition and vulnerability detection. How to define a proper similarity is the key element in implementing a fast detection method. We proposed a scalable method to detect binary vulnerabilities based on similarity. Procedures lifted from binaries are divided into several comparable strands by data dependency, and those strands are transformed into a normalized form by our tool named VulneraBin, so that similarity can be determined between two procedures through a hash value comparison. The low computational complexity allows semantically equivalent code to be identified in binaries compiled from million lines of source code in a fast and accurate way.
2021-03-15
Brauckmann, A., Goens, A., Castrillon, J..  2020.  ComPy-Learn: A toolbox for exploring machine learning representations for compilers. 2020 Forum for Specification and Design Languages (FDL). :1–4.
Deep Learning methods have not only shown to improve software performance in compiler heuristics, but also e.g. to improve security in vulnerability prediction or to boost developer productivity in software engineering tools. A key to the success of such methods across these use cases is the expressiveness of the representation used to abstract from the program code. Recent work has shown that different such representations have unique advantages in terms of performance. However, determining the best-performing one for a given task is often not obvious and requires empirical evaluation. Therefore, we present ComPy-Learn, a toolbox for conveniently defining, extracting, and exploring representations of program code. With syntax-level language information from the Clang compiler frontend and low-level information from the LLVM compiler backend, the tool supports the construction of linear and graph representations and enables an efficient search for the best-performing representation and model for tasks on program code.
2021-08-11
Chheng, Kimhok, Priyadi, Ardyono, Pujiantara, Margo, Mahindara, Vincentius Raki.  2020.  The Coordination of Dual Setting DOCR for Ring System Using Adaptive Modified Firefly Algorithm. 2020 International Seminar on Intelligent Technology and Its Applications (ISITIA). :44—50.
Directional Overcurrent Relays (DOCRs) play an essential role in the power system protection to guarantee the reliability, speed of relay operation and avoiding mal-trip in the primary and backup relays when unintentional fault conditions occur in the system. Moreover, the dual setting protection scheme is more efficient protection schemes for offering fast response protection and providing flexibility in the coordination of relay. In this paper, the Adaptive Modified Firefly Algorithm (AMFA) is used to determine the optimal coordination of dual setting DOCRs in the ring distribution system. The AMFA is completed by choosing the minimum value of pickup current (\textbackslashtextbackslashpmbI\textbackslashtextbackslashpmbP) and time dial setting (TDS). On the other hand, dual setting DOCRs protection scheme also proposed for operating in both forward and reverse directions that consisted of individual time current characteristics (TCC) curve for each direction. The previous method is applied to the ring distribution system network of PT. Pupuk Sriwidjaja by considering the fault on each bus. The result illustration that the AMFA within dual setting protection scheme is significantly reaching the optimized coordination and the relay coordination is certain for all simulation scenarios with the minimum operation. The AMFA has been successfully implemented in MATLAB software programming.
2021-02-16
Jin, Z., Yu, P., Guo, S. Y., Feng, L., Zhou, F., Tao, M., Li, W., Qiu, X., Shi, L..  2020.  Cyber-Physical Risk Driven Routing Planning with Deep Reinforcement-Learning in Smart Grid Communication Networks. 2020 International Wireless Communications and Mobile Computing (IWCMC). :1278—1283.
In modern grid systems which is a typical cyber-physical System (CPS), information space and physical space are closely related. Once the communication link is interrupted, it will make a great damage to the power system. If the service path is too concentrated, the risk will be greatly increased. In order to solve this problem, this paper constructs a route planning algorithm that combines node load pressure, link load balance and service delay risk. At present, the existing intelligent algorithms are easy to fall into the local optimal value, so we chooses the deep reinforcement learning algorithm (DRL). Firstly, we build a risk assessment model. The node risk assessment index is established by using the node load pressure, and then the link risk assessment index is established by using the average service communication delay and link balance degree. The route planning problem is then solved by a route planning algorithm based on DRL. Finally, experiments are carried out in a simulation scenario of a power grid system. The results show that our method can find a lower risk path than the original Dijkstra algorithm and the Constraint-Dijkstra algorithm.
2021-04-08
Shi, S., Li, J., Wu, H., Ren, Y., Zhi, J..  2020.  EFM: An Edge-Computing-Oriented Forwarding Mechanism for Information-Centric Networks. 2020 3rd International Conference on Hot Information-Centric Networking (HotICN). :154–159.
Information-Centric Networking (ICN) has attracted much attention as a promising future network design, which presents a paradigm shift from host-centric to content-centric. However, in edge computing scenarios, there is still no specific ICN forwarding mechanism to improve transmission performance. In this paper, we propose an edge-oriented forwarding mechanism (EFM) for edge computing scenarios. The rationale is to enable edge nodes smarter, such as acting as agents for both consumers and providers to improve content retrieval and distribution. On the one hand, EFM can assist consumers: the edge router can be used either as a fast content repository to satisfy consumers’ requests or as a smart delegate of consumers to request content from upstream nodes. On the other hand, EFM can assist providers: EFM leverages the optimized in-network recovery/retransmission to detect packet loss or even accelerate the content distribution. The goal of our research is to improve the performance of edge networks. Simulation results based on ndnSIM indicate that EFM can enable efficient content retrieval and distribution, friendly to both consumers and providers.
2021-02-16
Wu, J. M.-T., Srivastava, G., Pirouz, M., Lin, J. C.-W..  2020.  A GA-based Data Sanitization for Hiding Sensitive Information with Multi-Thresholds Constraint. 2020 International Conference on Pervasive Artificial Intelligence (ICPAI). :29—34.
In this work, we propose a new concept of multiple support thresholds to sanitize the database for specific sensitive itemsets. The proposed method assigns a stricter threshold to the sensitive itemset for data sanitization. Furthermore, a genetic-algorithm (GA)-based model is involved in the designed algorithm to minimize side effects. In our experimental results, the GA-based PPDM approach is compared with traditional compact GA-based model and results clearly showed that our proposed method can obtain better performance with less computational cost.
2021-05-18
Hasslinger, Gerhard, Ntougias, Konstantinos, Hasslinger, Frank, Hohlfeld, Oliver.  2020.  General Knapsack Bounds of Web Caching Performance Regarding the Properties of each Cacheable Object. 2020 IFIP Networking Conference (Networking). :821–826.
Caching strategies have been evaluated and compared in many studies, most often via simulation, but also in analytic methods. Knapsack solutions provide a general analytical approach for upper bounds on web caching performance. They assume objects of maximum (value/size) ratio being selected as cache content, with flexibility to define the caching value. Therefore the popularity, cost, size, time-to-live restrictions etc. per object can be included an overall caching goal, e.g., for reducing delay and/or transport path length in content delivery. The independent request model (IRM) leads to basic knapsack bounds for static optimum cache content. We show that a 2-dimensional (2D-)knapsack solution covers arbitrary request pattern, which selects dynamically changing content yielding maximum caching value for any predefined request sequence. Moreover, Belady's optimum strategy for clairvoyant caching is identified as a special case of our 2D-knapsack solution when all objects are unique. We also summarize a comprehensive picture of the demands and efficiency criteria for web caching, including updating speed and overheads. Our evaluations confirm significant performance gaps from LRU to advanced GreedyDual and score-based web caching methods and to the knapsack bounds.
2021-07-27
Xu, Jiahui, Wang, Chen, Li, Tingting, Xiang, Fengtao.  2020.  Improved Adversarial Attack against Black-box Machine Learning Models. 2020 Chinese Automation Congress (CAC). :5907–5912.
The existence of adversarial samples makes the security of machine learning models in practical application questioned, especially the black-box adversarial attack, which is very close to the actual application scenario. Efficient search for black-box attack samples is helpful to train more robust models. We discuss the situation that the attacker can get nothing except the final predict label. As for this problem, the current state-of-the-art method is Boundary Attack(BA) and its variants, such as Biased Boundary Attack(BBA), however it still requires large number of queries and kills a lot of time. In this paper, we propose a novel method to solve these shortcomings. First, we improved the algorithm for generating initial adversarial samples with smaller L2 distance. Second, we innovatively combine a swarm intelligence algorithm - Particle Swarm Optimization(PSO) with Biased Boundary Attack and propose PSO-BBA method. Finally, we experiment on ImageNet dataset, and compared our algorithm with the baseline algorithm. The results show that:(1)our improved initial point selection algorithm effectively reduces the number of queries;(2)compared with the most advanced methods, our PSO-BBA method improves the convergence speed while ensuring the attack accuracy;(3)our method has a good effect on both targeted attack and untargeted attack.
2021-02-01
Yeh, M., Tang, S., Bhattad, A., Zou, C., Forsyth, D..  2020.  Improving Style Transfer with Calibrated Metrics. 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). :3149–3157.
Style transfer produces a transferred image which is a rendering of a content image in the manner of a style image. We seek to understand how to improve style transfer.To do so requires quantitative evaluation procedures, but current evaluation is qualitative, mostly involving user studies. We describe a novel quantitative evaluation procedure. Our procedure relies on two statistics: the Effectiveness (E) statistic measures the extent that a given style has been transferred to the target, and the Coherence (C) statistic measures the extent to which the original image's content is preserved. Our statistics are calibrated to human preference: targets with larger values of E and C will reliably be preferred by human subjects in comparisons of style and content, respectively.We use these statistics to investigate relative performance of a number of Neural Style Transfer (NST) methods, revealing a number of intriguing properties. Admissible methods lie on a Pareto frontier (i.e. improving E reduces C, or vice versa). Three methods are admissible: Universal style transfer produces very good C but weak E; modifying the optimization used for Gatys' loss produces a method with strong E and strong C; and a modified cross-layer method has slightly better E at strong cost in C. While the histogram loss improves the E statistics of Gatys' method, it does not make the method admissible. Surprisingly, style weights have relatively little effect in improving EC scores, and most variability in transfer is explained by the style itself (meaning experimenters can be misguided by selecting styles). Our GitHub Link is available1.
2021-03-22
shree, S. R., Chelvan, A. Chilambu, Rajesh, M..  2020.  Optimization of Secret Key using cuckoo Search Algorithm for ensuring data integrity in TPA. 2020 International Conference on Computer Communication and Informatics (ICCCI). :1–5.
Optimization plays an important role in many problems that expect the accurate output. Security of the data stored in remote servers purely based on secret key which is used for encryption and decryption purpose. Many secret key generation algorithms such as RSA, AES are available to generate the key. The key generated by such algorithms are need to be optimized to provide more security to your data from unauthorized users as well as from the third party auditors(TPA) who is going to verify our data for integrity purpose. In this paper a method to optimize the secret key by using cuckoo search algorithm (CSA) is proposed.
2021-03-15
Zheng, T., Liu, H., Wang, Z., Yang, Q., Wang, H..  2020.  Physical-Layer Security with Finite Blocklength over Slow Fading Channels. 2020 International Conference on Computing, Networking and Communications (ICNC). :314–319.
This paper studies physical-layer security over slow fading channels, considering the impact of finite-blocklength secrecy coding. A comprehensive analysis and optimization framework is established to investigate the secrecy throughput (ST) of a legitimate user pair coexisting with an eavesdropper. Specifically, we devise both adaptive and non-adaptive optimization schemes to maximize the ST, where we derive optimal parameters including the transmission policy, blocklength, and code rates based on the instantaneous and statistical channel state information of the legitimate pair, respectively. Various important insights are provided. In particular, 1) increasing blocklength improves both reliability and secrecy with our transmission policy; 2) ST monotonically increases with blocklength; 3) ST initially increases and then decreases with secrecy rate, and there exists a critical secrecy rate that maximizes the ST. Numerical results are presented to verify theoretical findings.
2021-02-16
Shi, Y., Sagduyu, Y. E., Erpek, T..  2020.  Reinforcement Learning for Dynamic Resource Optimization in 5G Radio Access Network Slicing. 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1—6.
The paper presents a reinforcement learning solution to dynamic resource allocation for 5G radio access network slicing. Available communication resources (frequency-time blocks and transmit powers) and computational resources (processor usage) are allocated to stochastic arrivals of network slice requests. Each request arrives with priority (weight), throughput, computational resource, and latency (deadline) requirements, and if feasible, it is served with available communication and computational resources allocated over its requested duration. As each decision of resource allocation makes some of the resources temporarily unavailable for future, the myopic solution that can optimize only the current resource allocation becomes ineffective for network slicing. Therefore, a Q-learning solution is presented to maximize the network utility in terms of the total weight of granted network slicing requests over a time horizon subject to communication and computational constraints. Results show that reinforcement learning provides major improvements in the 5G network utility relative to myopic, random, and first come first served solutions. While reinforcement learning sustains scalable performance as the number of served users increases, it can also be effectively used to assign resources to network slices when 5G needs to share the spectrum with incumbent users that may dynamically occupy some of the frequency-time blocks.
2021-04-27
Manchanda, R., Sharma, K..  2020.  A Review of Reconstruction Algorithms in Compressive Sensing. 2020 International Conference on Advances in Computing, Communication Materials (ICACCM). :322–325.
Compressive Sensing (CS) is a promising technology for the acquisition of signals. The number of measurements is reduced by using CS which is needed to obtain the signals in some basis that are compressible or sparse. The compressible or sparse nature of the signals can be obtained by transforming the signals in some domain. Depending on the signals sparsity signals are sampled below the Nyquist sampling criteria by using CS. An optimization problem needs to be solved for the recovery of the original signal. Very few studies have been reported about the reconstruction of the signals. Therefore, in this paper, the reconstruction algorithms are elaborated systematically for sparse signal recovery in CS. The discussion of various reconstruction algorithms in made in this paper will help the readers in order to understand these algorithms efficiently.
Vuppalapati, C., Ilapakurti, A., Kedari, S., Vuppalapati, R., Vuppalapati, J., Kedari, S..  2020.  The Role of Combinatorial Mathematical Optimization and Heuristics to improve Small Farmers to Veterinarian access and to create a Sustainable Food Future for the World. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :214–221.
The Global Demand for agriculture and dairy products is rising. Demand is expected to double by 2050. This will challenge agriculture markets in a way we have not seen before. For instance, unprecedented demand to increase in dairy farm productivity of already shrinking farms, untethered perpetual access to veterinarians by small dairy farms, economic engines of the developing countries, for animal husbandry and, finally, unprecedented need to increase productivity of veterinarians who're already understaffed, over-stressed, resource constrained to meet the current global dairy demands. The lack of innovative solutions to address the challenge would result in a major obstacle to achieve sustainable food future and a colossal roadblock ending economic disparities. The paper proposes a novel innovative data driven framework cropped by data generated using dairy Sensors and by mathematical formulations using Solvers to generate an exclusive veterinarian daily farms prioritized visit list so as to have a greater coverage of the most needed farms performed in-time and improve small farmers access to veterinarians, a precious and highly shortage & stressed resource.
2021-05-03
Shen, Shen, Tedrake, Russ.  2020.  Sampling Quotient-Ring Sum-of-Squares Programs for Scalable Verification of Nonlinear Systems. 2020 59th IEEE Conference on Decision and Control (CDC). :2535–2542.
This paper presents a novel method, combining new formulations and sampling, to improve the scalability of sum-of-squares (SOS) programming-based system verification. Region-of-attraction approximation problems are considered for polynomial, polynomial with generalized Lur'e uncertainty, and rational trigonometric multi-rigid-body systems. Our method starts by identifying that Lagrange multipliers, traditionally heavily used for S-procedures, are a major culprit of creating bloated SOS programs. In light of this, we exploit inherent system properties-continuity, convexity, and implicit algebraic structure-and reformulate the problems as quotient-ring SOS programs, thereby eliminating all the multipliers. These new programs are smaller, sparser, less constrained, yet less conservative. Their computation is further improved by leveraging a recent result on sampling algebraic varieties. Remarkably, solution correctness is guaranteed with just a finite (in practice, very small) number of samples. Altogether, the proposed method can verify systems well beyond the reach of existing SOS-based approaches (32 states); on smaller problems where a baseline is available, it computes tighter solution 2-3 orders of magnitude faster.
Das, Arnab, Briggs, Ian, Gopalakrishnan, Ganesh, Krishnamoorthy, Sriram, Panchekha, Pavel.  2020.  Scalable yet Rigorous Floating-Point Error Analysis. SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. :1–14.
Automated techniques for rigorous floating-point round-off error analysis are a prerequisite to placing important activities in HPC such as precision allocation, verification, and code optimization on a formal footing. Yet existing techniques cannot provide tight bounds for expressions beyond a few dozen operators-barely enough for HPC. In this work, we offer an approach embedded in a new tool called SATIHE that scales error analysis by four orders of magnitude compared to today's best-of-class tools. We explain how three key ideas underlying SATIHE helps it attain such scale: path strength reduction, bound optimization, and abstraction. SATIHE provides tight bounds and rigorous guarantees on significantly larger expressions with well over a hundred thousand operators, covering important examples including FFT, matrix multiplication, and PDE stencils.
2020-12-15
Prajapati, S. A., Deb, S., Gupta, M. K..  2020.  On Some Universally Good Fractional Repetition Codes. 2020 International Conference on COMmunication Systems NETworkS (COMSNETS). :404—411.
Data storage in Distributed Storage Systems (DSS) is a multidimensional optimization problem. Using network coding, one wants to provide reliability, scalability, security, reduced storage overhead, reduced bandwidth for repair and minimal disk I/O in such systems. Advances in the construction of optimal Fractional Repetition (FR) codes, a smart replication of encoded packets on n nodes which also provides optimized disk I/O and where a node failure can be repaired by contacting some specific set of nodes in the system, is in high demand. An attempt towards the construction of universally good FR codes using three different approaches is addressed in this work. In this paper, we present that the code constructed using the partial regular graph for heterogeneous DSS, where the number of packets on each node is different, is universally good. Further, we also encounter the list of parameters for which the ring construction and the T-construction results in universally good codes. In addition, we evaluate the FR code constructions meeting the minimum distance bound.
2021-05-18
Wingerath, Wolfram, Gessert, Felix, Witt, Erik, Kuhlmann, Hannes, Bücklers, Florian, Wollmer, Benjamin, Ritter, Norbert.  2020.  Speed Kit: A Polyglot GDPR-Compliant Approach For Caching Personalized Content. 2020 IEEE 36th International Conference on Data Engineering (ICDE). :1603–1608.
Users leave when page loads take too long. This simple fact has complex implications for virtually all modern businesses, because accelerating content delivery through caching is not as simple as it used to be. As a fundamental technical challenge, the high degree of personalization in today's Web has seemingly outgrown the capabilities of traditional content delivery networks (CDNs) which have been designed for distributing static assets under fixed caching times. As an additional legal challenge for services with personalized content, an increasing number of regional data protection laws constrain the ways in which CDNs can be used in the first place. In this paper, we present Speed Kit as a radically different approach for content distribution that combines (1) a polyglot architecture for efficiently caching personalized content with (2) a natively GDPR-compliant client proxy that handles all sensitive information within the user device. We describe the system design and implementation, explain the custom cache coherence protocol to avoid data staleness and achieve Δ-atomicity, and we share field experiences from over a year of productive use in the e-commerce industry.
2021-08-31
Mahmood, Sabah Robitan, Hatami, Mohammad, Moradi, Parham.  2020.  A Trust-based Recommender System by Integration of Graph Clustering and Ant Colony Optimization. 2020 10th International Conference on Computer and Knowledge Engineering (ICCKE). :598–604.
Recommender systems (RSs) are intelligent systems to help e-commerce users to find their preferred items among millions of available items by considering the profiles of both users and items. These systems need to predict the unknown ratings and then recommend a set of high rated items. Among the others, Collaborative Filtering (CF) is a successful recommendation approach and has been utilized in many real-world systems. CF methods seek to predict missing ratings by considering the preferences of those users who are similar to the target user. A major task in Collaborative Filtering is to identify an accurate set of users and employing them in the rating prediction process. Most of the CF-based methods suffer from the cold-start issue which arising from an insufficient number of ratings in the prediction process. This is due to the fact that users only comment on a few items and thus CF methods faced with a sparse user-item matrix. To tackle this issue, a new collaborative filtering method is proposed that has a trust-aware strategy. The proposed method employs the trust relationships of users as additional information to help the CF tackle the cold-start issue. To this end, the proposed integrated trust relationships in the prediction process by using the Ant Colony Optimization (ACO). The proposed method has four main steps. The aim of the first step is ranking users based on their similarities to the target user. This step uses trust relationships and the available rating values in its process. Then in the second step, graph clustering methods are used to cluster the trust graph to group similar users. In the third step, the users are weighted based on their similarities to the target users. To this end, an ACO process is employed on the users' graph. Finally, those of top users with high similarity to the target user are used in the rating prediction process. The superiority of our method has been shown in the experimental results in comparison with well-known and state-of-the-art methods.
2021-02-01
Wickramasinghe, C. S., Marino, D. L., Grandio, J., Manic, M..  2020.  Trustworthy AI Development Guidelines for Human System Interaction. 2020 13th International Conference on Human System Interaction (HSI). :130–136.
Artificial Intelligence (AI) is influencing almost all areas of human life. Even though these AI-based systems frequently provide state-of-the-art performance, humans still hesitate to develop, deploy, and use AI systems. The main reason for this is the lack of trust in AI systems caused by the deficiency of transparency of existing AI systems. As a solution, “Trustworthy AI” research area merged with the goal of defining guidelines and frameworks for improving user trust in AI systems, allowing humans to use them without fear. While trust in AI is an active area of research, very little work exists where the focus is to build human trust to improve the interactions between human and AI systems. In this paper, we provide a concise survey on concepts of trustworthy AI. Further, we present trustworthy AI development guidelines for improving the user trust to enhance the interactions between AI systems and humans, that happen during the AI system life cycle.
2021-02-03
Liu, H., Zhou, Z., Zhang, M..  2020.  Application of Optimized Bidirectional Generative Adversarial Network in ICS Intrusion Detection. 2020 Chinese Control And Decision Conference (CCDC). :3009—3014.

Aiming at the problem that the traditional intrusion detection method can not effectively deal with the massive and high-dimensional network traffic data of industrial control system (ICS), an ICS intrusion detection strategy based on bidirectional generative adversarial network (BiGAN) is proposed in this paper. In order to improve the applicability of BiGAN model in ICS intrusion detection, the optimal model was obtained through the single variable principle and cross-validation. On this basis, the supervised control and data acquisition (SCADA) standard data set is used for comparative experiments to verify the performance of the optimized model on ICS intrusion detection. The results show that the ICS intrusion detection method based on optimized BiGAN has higher accuracy and shorter detection time than other methods.

2021-05-25
Anubi, Olugbenga Moses, Konstantinou, Charalambos, Wong, Carlos A., Vedula, Satish.  2020.  Multi-Model Resilient Observer under False Data Injection Attacks. 2020 IEEE Conference on Control Technology and Applications (CCTA). :1–8.

In this paper, we present the concept of boosting the resiliency of optimization-based observers for cyber-physical systems (CPS) using auxiliary sources of information. Due to the tight coupling of physics, communication and computation, a malicious agent can exploit multiple inherent vulnerabilities in order to inject stealthy signals into the measurement process. The problem setting considers the scenario in which an attacker strategically corrupts portions of the data in order to force wrong state estimates which could have catastrophic consequences. The goal of the proposed observer is to compute the true states in-spite of the adversarial corruption. In the formulation, we use a measurement prior distribution generated by the auxiliary model to refine the feasible region of a traditional compressive sensing-based regression problem. A constrained optimization-based observer is developed using l1-minimization scheme. Numerical experiments show that the solution of the resulting problem recovers the true states of the system. The developed algorithm is evaluated through a numerical simulation example of the IEEE 14-bus system.