Biblio

Found 139 results

Filters: Keyword is control theory  [Clear All Filters]
2021-03-29
Halabi, T., Wahab, O. A., Zulkernine, M..  2020.  A Game-Theoretic Approach for Distributed Attack Mitigation in Intelligent Transportation Systems. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1–6.
Intelligent Transportation Systems (ITS) play a vital role in the development of smart cities. They enable various road safety and efficiency applications such as optimized traffic management, collision avoidance, and pollution control through the collection and evaluation of traffic data from Road Side Units (RSUs) and connected vehicles in real time. However, these systems are highly vulnerable to data corruption attacks which can seriously influence their decision-making abilities. Traditional attack detection schemes do not account for attackers' sophisticated and evolving strategies and ignore the ITS's constraints on security resources. In this paper, we devise a security game model that allows the defense mechanism deployed in the ITS to optimize the distribution of available resources for attack detection while considering mixed attack strategies, according to which the attacker targets multiple RSUs in a distributed fashion. In our security game, the utility of the ITS is quantified in terms of detection rate, attack damage, and the relevance of the information transmitted by the RSUs. The proposed approach will enable the ITS to mitigate the impact of attacks and increase its resiliency. The results show that our approach reduces the attack impact by at least 20% compared to the one that fairly allocates security resources to RSUs indifferently to attackers' strategies.
2021-02-03
Gao, L., Sun, J., Li, J..  2020.  Security of Networked Control Systems with Incomplete Information Based on Game Theory. 2020 39th Chinese Control Conference (CCC). :6701—6706.

The security problem of networked control systems (NCSs) suffering denial of service(DoS) attacks with incomplete information is investigated in this paper. Data transmission among different components in NCSs may be blocked due to DoS attacks. We use the concept of security level to describe the degree of security of different components in an NCS. Intrusion detection system (IDS) is used to monitor the invalid data generated by DoS attacks. At each time slot, the defender considers which component to monitor while the attacker considers which place for invasion. A one-shot game between attacker and defender is built and both the complete information case and the incomplete information case are considered. Furthermore, a repeated game model with updating beliefs is also established based on the Bayes' rule. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method.

2021-06-02
Sun, Mingjing, Zhao, Chengcheng, He, Jianping.  2020.  Privacy-Preserving Correlated Data Publication with a Noise Adding Mechanism. 2020 IEEE 16th International Conference on Control Automation (ICCA). :494—499.
The privacy issue in data publication is critical and has been extensively studied. However, most of the existing works assume the data to be published is independent, i.e., the correlation among data is neglected. The correlation is unavoidable in data publication, which universally manifests intrinsic correlations owing to social, behavioral, and genetic relationships. In this paper, we investigate the privacy concern of data publication where deterministic and probabilistic correlations are considered, respectively. Specifically, (ε,δ)-multi-dimensional data-privacy (MDDP) is proposed to quantify the correlated data privacy. It characterizes the disclosure probability of the published data being jointly estimated with the correlation under a given accuracy. Then, we explore the effects of deterministic correlations on privacy disclosure. For deterministic correlations, it is shown that the successful disclosure rate with correlations increases compared to the one without knowing the correlation. Meanwhile, a closed-form solution of the optimal disclosure probability and the strict bound of privacy disclosure gain are derived. Extensive simulations on a real dataset verify our analytical results.
Xu, Yizheng.  2020.  Application Research Based on Machine Learning in Network Privacy Security. 2020 International Conference on Computer Information and Big Data Applications (CIBDA). :237—240.
As the hottest frontier technology in the field of artificial intelligence, machine learning is subverting various industries step by step. In the future, it will penetrate all aspects of our lives and become an indispensable technology around us. Among them, network security is an area where machine learning can show off its strengths. Among many network security problems, privacy protection is a more difficult problem, so it needs more introduction of new technologies, new methods and new ideas such as machine learning to help solve some problems. The research contents for this include four parts: an overview of machine learning, the significance of machine learning in network security, the application process of machine learning in network security research, and the application of machine learning in privacy protection. It focuses on the issues related to privacy protection and proposes to combine the most advanced matching algorithm in deep learning methods with information theory data protection technology, so as to introduce it into biometric authentication. While ensuring that the loss of matching accuracy is minimal, a high-standard privacy protection algorithm is concluded, which enables businesses, government entities, and end users to more widely accept privacy protection technology.
Guerrero-Bonilla, Luis, Saldaña, David, Kumar, Vijay.  2020.  Dense r-robust formations on lattices. 2020 IEEE International Conference on Robotics and Automation (ICRA). :6633—6639.
Robot networks are susceptible to fail under the presence of malicious or defective robots. Resilient networks in the literature require high connectivity and large communication ranges, leading to high energy consumption in the communication network. This paper presents robot formations with guaranteed resiliency that use smaller communication ranges than previous results in the literature. The formations can be built on triangular and square lattices in the plane, and cubic lattices in the three-dimensional space. We support our theoretical framework with simulations.
Scarabaggio, Paolo, Carli, Raffaele, Dotoli, Mariagrazia.  2020.  A game-theoretic control approach for the optimal energy storage under power flow constraints in distribution networks. 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE). :1281—1286.
Traditionally, the management of power distribution networks relies on the centralized implementation of the optimal power flow and, in particular, the minimization of the generation cost and transmission losses. Nevertheless, the increasing penetration of both renewable energy sources and independent players such as ancillary service providers in modern networks have made this centralized framework inadequate. Against this background, we propose a noncooperative game-theoretic framework for optimally controlling energy storage systems (ESSs) in power distribution networks. Specifically, in this paper we address a power grid model that comprehends traditional loads, distributed generation sources and several independent energy storage providers, each owning an individual ESS. Through a rolling-horizon approach, the latter participate in the grid optimization process, aiming both at increasing the penetration of distributed generation and leveling the power injection from the transmission grid. Our framework incorporates not only economic factors but also grid stability aspects, including the power flow constraints. The paper fully describes the distribution grid model as well as the underlying market hypotheses and policies needed to force the energy storage providers to find a feasible equilibrium for the network. Numerical experiments based on the IEEE 33-bus system confirm the effectiveness and resiliency of the proposed framework.
Xiong, Yi, Li, Zhongkui.  2020.  Privacy Preserving Average Consensus by Adding Edge-based Perturbation Signals. 2020 IEEE Conference on Control Technology and Applications (CCTA). :712—717.
In this paper, the privacy preserving average consensus problem of multi-agent systems with strongly connected and weight balanced graph is considered. In most existing consensus algorithms, the agents need to exchange their state information, which leads to the disclosure of their initial states. This might be undesirable because agents' initial states may contain some important and sensitive information. To solve the problem, we propose a novel distributed algorithm, which can guarantee average consensus and meanwhile preserve the agents' privacy. This algorithm assigns some additive perturbation signals on the communication edges and these perturbations signals will be added to original true states for information exchanging. This ensures that direct disclosure of initial states can be avoided. Then a rigid analysis of our algorithm's privacy preserving performance is provided. For any individual agent in the network, we present a necessary and sufficient condition under which its privacy is preserved. The effectiveness of our algorithm is demonstrated by a numerical simulation.
2021-09-09
Zeke, LI, Zewen, CHEN, Chunyan, WANG, Zhiguang, XU, Ye, LIANG.  2020.  Research on Security Evaluation Technology of Wireless Access of Electric Power Monitoring System Based on Fuzzy. 2020 IEEE 3rd International Conference on Computer and Communication Engineering Technology (CCET). :318–321.
In order to solve the defense problem of wireless network security threats in new energy stations, a new wireless network security risk assessment model which proposes a wireless access security evaluation method for power monitoring system based on fuzzy theory, was established based on the study of security risk assessment methods in this paper. The security evaluation method first divides the security evaluation factor set, then determines the security evaluation weight coefficient, then calculates the network security level membership matrix, and finally combines specific examples to analyze the resulting data. this paper provided new ideas and methods for the wireless access security evaluation of new energy stations.
2021-03-29
Sayers, J. M., Feighery, B. E., Span, M. T..  2020.  A STPA-Sec Case Study: Eliciting Early Security Requirements for a Small Unmanned Aerial System. 2020 IEEE Systems Security Symposium (SSS). :1—8.

This work describes a top down systems security requirements analysis approach for understanding and eliciting security requirements for a notional small unmanned aerial system (SUAS). More specifically, the System-Theoretic Process Analysis approach for Security (STPA-Sec) is used to understand and elicit systems security requirements. The effort employs STPA-Sec on a notional SUAS system case study to detail the development of functional-level security requirements, design-level engineering considerations, and architectural-level security specification criteria early in the system life cycle when the solution trade-space is largest rather than merely examining components and adding protections during system operation or sustainment. These details were elaborated during a semester independent study research effort by two United States Air Force Academy Systems Engineering cadets, guided by their instructor and a series of working group sessions with UAS operators and subject matter experts. This work provides insight into a viable systems security requirements analysis approach which results in traceable security, safety, and resiliency requirements that can be designed-for, built-to, and verified with confidence.

2021-02-08
Haque, M. A., Shetty, S., Kamhoua, C. A., Gold, K..  2020.  Integrating Mission-Centric Impact Assessment to Operational Resiliency in Cyber-Physical Systems. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–7.

Developing mission-centric impact assessment techniques to address cyber resiliency in the cyber-physical systems (CPSs) requires integrating system inter-dependencies to the risk and resilience analysis process. Generally, network administrators utilize attack graphs to estimate possible consequences in a networked environment. Attack graphs lack to incorporate the operations-specific dependencies. Localizing the dependencies among operational missions, tasks, and the hosting devices in a large-scale CPS is also challenging. In this work, we offer a graphical modeling technique to integrate the mission-centric impact assessment of cyberattacks by relating the effect to the operational resiliency by utilizing a combination of the logical attack graph and mission impact propagation graph. We propose formal techniques to compute cyberattacks’ impact on the operational mission and offer an optimization process to minimize the same, having budgetary restrictions. We also relate the effect to the system functional operability. We illustrate our modeling techniques using a SCADA (supervisory control and data acquisition) case study for the cyber-physical power systems. We believe our proposed method would help evaluate and minimize the impact of cyber attacks on CPS’s operational missions and, thus, enhance cyber resiliency.

2021-09-09
Zhang, Jiaxin, Li, Yongming.  2020.  Adaptive Fuzzy Control for Active Suspension Systems with Stochastic Disturbance and Full State Constraints*. 2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI). :380–385.
In this paper, an adaptive fuzzy control scheme is proposed for one-quarter automotive active suspension system with full sate constraints and stochastic disturbance. In the considered active suspension system, to further improve the driving security and comfort, the problems of stochastic perturbation and full state constraints are considered simultaneously. In the framework of backstepping, the barrier Lyapunov function is proposed to constrain full state variables. Consequently, by combing the Itô differential formula and stochastic control theory, an adaptive controller is designed to adopt the uneven pavement surface. Ultimately, on the basis of Lyapunov stability theory, it proves that the designed controller not only can constrain the bodywork, the displacement of tires, the current of the electromagnetic actuator, the speeds of the car body and the tires within boundaries, but also can eliminate the stochastic disturbance.
2021-09-07
Sasahara, Hampei, Sarıta\c s, Serkan, Sandberg, Henrik.  2020.  Asymptotic Security of Control Systems by Covert Reaction: Repeated Signaling Game with Undisclosed Belief. 2020 59th IEEE Conference on Decision and Control (CDC). :3243–3248.
This study investigates the relationship between resilience of control systems to attacks and the information available to malicious attackers. Specifically, it is shown that control systems are guaranteed to be secure in an asymptotic manner by rendering reactions against potentially harmful actions covert. The behaviors of the attacker and the defender are analyzed through a repeated signaling game with an undisclosed belief under covert reactions. In the typical setting of signaling games, reactions conducted by the defender are supposed to be public information and the measurability enables the attacker to accurately trace transitions of the defender's belief on existence of a malicious attacker. In contrast, the belief in the game considered in this paper is undisclosed and hence common equilibrium concepts can no longer be employed for the analysis. To surmount this difficulty, a novel framework for decision of reasonable strategies of the players in the game is introduced. Based on the presented framework, it is revealed that any reasonable strategy chosen by a rational malicious attacker converges to the benign behavior as long as the reactions performed by the defender are unobservable to the attacker. The result provides an explicit relationship between resilience and information, which indicates the importance of covertness of reactions for designing secure control systems.
2021-06-02
Wang, Lei, Manchester, Ian R., Trumpf, Jochen, Shi, Guodong.  2020.  Initial-Value Privacy of Linear Dynamical Systems. 2020 59th IEEE Conference on Decision and Control (CDC). :3108—3113.
This paper studies initial-value privacy problems of linear dynamical systems. We consider a standard linear time-invariant system with random process and measurement noises. For such a system, eavesdroppers having access to system output trajectories may infer the system initial states, leading to initial-value privacy risks. When a finite number of output trajectories are eavesdropped, we consider a requirement that any guess about the initial values can be plausibly denied. When an infinite number of output trajectories are eavesdropped, we consider a requirement that the initial values should not be uniquely recoverable. In view of these two privacy requirements, we define differential initial-value privacy and intrinsic initial-value privacy, respectively, for the system as metrics of privacy risks. First of all, we prove that the intrinsic initial-value privacy is equivalent to unobservability, while the differential initial-value privacy can be achieved for a privacy budget depending on an extended observability matrix of the system and the covariance of the noises. Next, the inherent network nature of the considered linear system is explored, where each individual state corresponds to a node and the state and output matrices induce interaction and sensing graphs, leading to a network system. Under this network system perspective, we allow the initial states at some nodes to be public, and investigate the resulting intrinsic initial- value privacy of each individual node. We establish necessary and sufficient conditions for such individual node initial-value privacy, and also prove that the intrinsic initial-value privacy of individual nodes is generically determined by the network structure.
Gohari, Parham, Hale, Matthew, Topcu, Ufuk.  2020.  Privacy-Preserving Policy Synthesis in Markov Decision Processes. 2020 59th IEEE Conference on Decision and Control (CDC). :6266—6271.
In decision-making problems, the actions of an agent may reveal sensitive information that drives its decisions. For instance, a corporation's investment decisions may reveal its sensitive knowledge about market dynamics. To prevent this type of information leakage, we introduce a policy synthesis algorithm that protects the privacy of the transition probabilities in a Markov decision process. We use differential privacy as the mathematical definition of privacy. The algorithm first perturbs the transition probabilities using a mechanism that provides differential privacy. Then, based on the privatized transition probabilities, we synthesize a policy using dynamic programming. Our main contribution is to bound the "cost of privacy," i.e., the difference between the expected total rewards with privacy and the expected total rewards without privacy. We also show that computing the cost of privacy has time complexity that is polynomial in the parameters of the problem. Moreover, we establish that the cost of privacy increases with the strength of differential privacy protections, and we quantify this increase. Finally, numerical experiments on two example environments validate the established relationship between the cost of privacy and the strength of data privacy protections.
Anbumani, P., Dhanapal, R..  2020.  Review on Privacy Preservation Methods in Data Mining Based on Fuzzy Based Techniques. 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). :689—694.
The most significant motivation behind calculations in data mining will play out excavation on incomprehensible past examples since the extremely large data size. During late occasions there are numerous phenomenal improvements in data assembling because of the advancement in the field of data innovation. Lately, Privacy issues in data Preservation didn't get a lot of consideration in the process mining network; nonetheless, a few protection safeguarding procedures in data change strategies have been proposed in the data mining network. There are more normal distinction between data mining and cycle mining exist yet there are key contrasts that make protection safeguarding data mining methods inadmissible to mysterious cycle data. Results dependent on the data mining calculation can be utilized in different regions, for example, Showcasing, climate estimating and Picture Examination. It is likewise uncovered that some delicate data has a result of the mining calculation. Here we can safeguard the Privacy by utilizing PPT (Privacy Preservation Techniques) strategies. Important Concept in data mining is privacy preservation Techniques (PPT) because data exchanged between different persons needs security, so that other persons didn't know what actual data transferred between the actual persons. Preservation in data mining deals that not showing the output information / data in the data mining by using various methods while the output data is precious. There are two techniques used for privacy preservation techniques. One is to alter the input information / data and another one is to alter the output information / data. The method is proposed for protection safeguarding in data base environmental factors is data change. This capacity has fuzzy three-sided participation with this strategy for data change to change the first data collection.
Das, Sima, Panda, Ganapati.  2020.  An Initiative Towards Privacy Risk Mitigation Over IoT Enabled Smart Grid Architecture. 2020 International Conference on Renewable Energy Integration into Smart Grids: A Multidisciplinary Approach to Technology Modelling and Simulation (ICREISG). :168—173.
The Internet of Things (IoT) has transformed many application domains with realtime, continuous, automated control and information transmission. The smart grid is one such futuristic application domain in execution, with a large-scale IoT network as its backbone. By leveraging the functionalities and characteristics of IoT, the smart grid infrastructure benefits not only consumers, but also service providers and power generation organizations. The confluence of IoT and smart grid comes with its own set of challenges. The underlying cyberspace of IoT, though facilitates communication (information propagation) among devices of smart grid infrastructure, it undermines the privacy at the same time. In this paper we propose a new measure for quantifying the probability of privacy leakage based on the behaviors of the devices involved in the communication process. We construct a privacy stochastic game model based on the information shared by the device, and the access to the compromised device. The existence of Nash Equilibrium strategy of the game is proved theoretically. We experimentally validate the effectiveness of the privacy stochastic game model.
2021-09-09
Zarubskiy, Vladimir G., Bondarchuk, Aleksandr S., Bondarchuk, Ksenija A..  2020.  Evaluation of the Computational Complexity of Implementation of the Process of Adaptation of High-Reliable Control Systems. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :964–967.
The development of control systems of increased reliability is highly relevant due to their widespread introduction in various sectors of human activity, including those where failure of the control system can lead to serious or catastrophic consequences. The increase of the reliability of control systems is directly related with the reliability of control computers (so called intellectual centers) since the computer technology is the basis of modern control systems. One of the possible solutions to the development of highly reliable control computers is the practical implementation of the provisions of the theory of structural stability, which involves the practical solution of two main tasks - this is the task of functional adaptation and the preceding task of functional diagnostics. This article deals with the issues on the assessment of computational complexity of the implementation of the adaptation process of structural and sustainable control computer. The criteria of computational complexity are the characteristics of additionally attracted resources, such as the temporal characteristics of the adaptation process and the characteristics of the involved amount of memory resources of the control computer involved in the implementation of the adaptation process algorithms.
2021-05-25
Barbeau, Michel, Cuppens, Frédéric, Cuppens, Nora, Dagnas, Romain, Garcia-Alfaro, Joaquin.  2020.  Metrics to Enhance the Resilience of Cyber-Physical Systems. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1167—1172.
We focus on resilience towards covert attacks on Cyber-Physical Systems (CPS). We define the new k-steerability and l-monitorability control-theoretic concepts. k-steerability reflects the ability to act on every individual plant state variable with at least k different groups of functionally diverse input signals. l-monitorability indicates the ability to monitor every individual plant state variable with £ different groups of functionally diverse output signals. A CPS with k-steerability and l-monitorability is said to be (k, l)-resilient. k and l, when both greater than one, provide the capability to mitigate the impact of covert attacks when some signals, but not all, are compromised. We analyze the influence of k and l on the resilience of a system and the ability to recover its state when attacks are perpetrated. We argue that the values of k and l can be augmented by combining redundancy and diversity in hardware and software techniques that apply the moving target paradigm.
2021-06-02
Yazdani, Kasra, Hale, Matthew.  2020.  Error Bounds and Guidelines for Privacy Calibration in Differentially Private Kalman Filtering. 2020 American Control Conference (ACC). :4423—4428.
Differential privacy has emerged as a formal framework for protecting sensitive information in control systems. One key feature is that it is immune to post-processing, which means that arbitrary post-hoc computations can be performed on privatized data without weakening differential privacy. It is therefore common to filter private data streams. To characterize this setup, in this paper we present error and entropy bounds for Kalman filtering differentially private state trajectories. We consider systems in which an output trajectory is privatized in order to protect the state trajectory that produced it. We provide bounds on a priori and a posteriori error and differential entropy of a Kalman filter which is processing the privatized output trajectories. Using the error bounds we develop, we then provide guidelines to calibrate privacy levels in order to keep filter error within pre-specified bounds. Simulation results are presented to demonstrate these developments.
Priyanka, J., Rajeshwari, K.Raja, Ramakrishnan, M..  2020.  Operative Access Regulator for Attribute Based Generalized Signcryption Using Rough Set Theory. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). :458—460.
The personal health record has been shared and preserved easily with cloud core storage. Privacy and security have been one of the main demerits of core CloudHealthData storage. By increasing the security concerns in this paper experimented Operative Access Regulator for Attribute Based Generalized Signcryption Using rough set theory. By using rough set theory, the classifications of the attribute have been improved as well as the compulsory attribute has been formatted for decrypting process by using reduct and core. The Generalized signcryption defined priority wise access to diminish the cost and rise the effectiveness of the proposed model. The PHR has been stored under the access priorities of Signature only, encryption only and signcryption only mode. The proposed ABGS performance fulfills the secrecy, authentication and also other security principles.
Sun, Weiqi, Li, Yuanlong, Shi, Liangren.  2020.  The Performance Evaluation and Resilience Analysis of Supply Chain Based on Logistics Network. 2020 39th Chinese Control Conference (CCC). :5772—5777.
With the development of globalization, more and more enterprises are involved in the supply chain network with increasingly complex structure. In this paper, enterprises and relations in the logistics network are abstracted as nodes and edges of the complex network. A graph model for a supply chain network to specified industry is constructed, and the Neo4j graph database is employed to store the graph data. This paper uses the theoretical research tool of complex network to model and analyze the supply chain, and designs a supply chain network evaluation system which include static and dynamic measurement indexes according to the statistical characteristics of complex network. In this paper both the static and dynamic resilience characteristics of the the constructed supply chain network are evaluated from the perspective of complex network. The numeric experimental simulations are conducted for validation. This research has practical and theoretical significance for enterprises to make strategies to improve the anti-risk capability of supply chain network based on logistics network information.
Zegers, Federico M., Hale, Matthew T., Shea, John M., Dixon, Warren E..  2020.  Reputation-Based Event-Triggered Formation Control and Leader Tracking with Resilience to Byzantine Adversaries. 2020 American Control Conference (ACC). :761—766.
A distributed event-triggered controller is developed for formation control and leader tracking (FCLT) with robustness to adversarial Byzantine agents for a class of heterogeneous multi-agent systems (MASs). A reputation-based strategy is developed for each agent to detect Byzantine agent behaviors within their neighbor set and then selectively disregard Byzantine state information. Selectively ignoring Byzantine agents results in time-varying discontinuous changes to the network topology. Nonsmooth dynamics also result from the use of the event-triggered strategy enabling intermittent communication. Nonsmooth Lyapunov methods are used to prove stability and FCLT of the MAS consisting of the remaining cooperative agents.
2021-09-07
Nweke, Livinus Obiora, Wolthusen, Stephen D..  2020.  Modelling Adversarial Flow in Software-Defined Industrial Control Networks Using a Queueing Network Model. 2020 IEEE Conference on Communications and Network Security (CNS). :1–6.
In recent years, software defined networking (SDN) has been proposed for enhancing the security of industrial control networks. However, its ability to guarantee the quality of service (QoS) requirements of such networks in the presence of adversarial flow still needs to be investigated. Queueing theory and particularly queueing network models have long been employed to study the performance and QoS characteristics of networks. The latter appears to be particularly suitable to capture the behaviour of SDN owing to the dependencies between layers, planes and components in an SDN architecture. Also, several authors have used queueing network models to study the behaviour of different application of SDN architectures, but none of the existing works have considered the strong periodic network traffic in software-defined industrial control networks. In this paper, we propose a queueing network model for softwaredefined industrial control networks, taking into account the strong periodic patterns of the network traffic in the data plane. We derive the performance measures for the analytical model and apply the queueing network model to study the effect of adversarial flow in software-defined industrial control networks.
2021-06-02
Avula, Ramana R., Oechtering, Tobias J..  2020.  On Design of Optimal Smart Meter Privacy Control Strategy Against Adversarial Map Detection. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :5845—5849.
We study the optimal control problem of the maximum a posteriori (MAP) state sequence detection of an adversary using smart meter data. The privacy leakage is measured using the Bayesian risk and the privacy-enhancing control is achieved in real-time using an energy storage system. The control strategy is designed to minimize the expected performance of a non-causal adversary at each time instant. With a discrete-state Markov model, we study two detection problems: when the adversary is unaware or aware of the control. We show that the adversary in the former case can be controlled optimally. In the latter case, where the optimal control problem is shown to be non-convex, we propose an adaptive-grid approximation algorithm to obtain a sub-optimal strategy with reduced complexity. Although this work focuses on privacy in smart meters, it can be generalized to other sensor networks.
2021-09-09
Kanner, Tatiana M., Kanner, Andrey M..  2020.  Testing Software and Hardware Data Security Tools Using the Automata Theory and the Graph Theory. 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :615–618.
The article focuses on the application of existing provisions of the automata and graph theories to solving the problem of testing software and hardware data security tools (DST). The software and hardware DST, unlike software ones, include hardware components that implement key security functions, while preventing from using a number of testing methods and tools. In addition to the possibility of applying a particular known testing method or tool to software and hardware DST, what remains acute is the problem of ensuring completeness and optimality of such testing. The developers of various DST do not often have a clear understanding of when they can stop testing and whether the test results allow them to talk about its completeness. Accordingly, testing of DST is often spontaneous, and the developer does not understand whether all the security functions have been tested, whether all the states and all possible sets of parameters have been tested, and whether testing is being carried out in the optimal way. To eliminate these shortcomings, the authors of the article propose to use a mathematical approach based on the theories of automata and graphs to solve the problem of testing software and hardware DST, which can be also used for other software and hardware, as well as software tools and systems. Applying this approach in practice, it is possible to confirm or reject the possibility of ensuring completeness of testing a specific data security tool, as well as identifying specific measures to ensure completeness and optimality of testing.