Biblio

Found 524 results

Filters: Keyword is Servers  [Clear All Filters]
2020-03-30
Thida, Aye, Shwe, Thanda.  2020.  Process Provenance-based Trust Management in Collaborative Fog Environment. 2020 IEEE Conference on Computer Applications(ICCA). :1–5.
With the increasing popularity and adoption of IoT technology, fog computing has been used as an advancement to cloud computing. Although trust management issues in cloud have been addressed, there are still very few studies in a fog area. Trust is needed for collaborating among fog nodes and trust can further improve the reliability by assisting in selecting the fog nodes to collaborate. To address this issue, we present a provenance based trust mechanism that traces the behavior of the process among fog nodes. Our approach adopts the completion rate and failure rate as the process provenance in trust scores of computing workload, especially obvious measures of trustworthiness. Simulation results demonstrate that the proposed system can effectively be used for collaboration in a fog environment.
2019-11-25
Pei, Xin, Li, Xuefeng, Wu, Xiaochuan, Zheng, Kaiyan, Zhu, Boheng, Cao, Yixin.  2019.  Assured Delegation on Data Storage and Computation via Blockchain System. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0055–0061.
With the widespread of cloud computing, the delegation of storage and computing is becoming a popular trend. Concerns on data integrity, security, user privacy as well as the correctness of execution are highlighted due to the untrusted remote data manipulation. Most of existing proposals solve the integrity checking and verifiable computation problems by challenge-response model, but are lack of scalability and reusability. Via blockchain, we achieve efficient and transparent public verifiable delegation for both storage and computing. Meanwhile, the smart contract provides API for request handling and secure data query. The security and privacy issues of data opening are settled by applying cryptographic algorithms all through the delegations. Additionally, any access to the outsourced data requires the owner's authentication, so that the dat transference and utilization are under control.
2020-02-17
Ganguly, Pallab, Nasipuri, Mita, Dutta, Sourav.  2019.  Challenges of the Existing Security Measures Deployed in the Smart Grid Framework. 2019 IEEE 7th International Conference on Smart Energy Grid Engineering (SEGE). :1–5.
Due to the rise of huge population in mankind and the large variety of upcoming utilization of power, the energy requirement has substantially increased. Smart Grid is a very important part of the Smart Cities initiative and is one of the crucial components in distribution and reconciliation of energy. Security of the smart grid infrastructure, which is an integral part of the smart grid framework, intended at transitioning the conventional power grid system into a robust, reliable, adaptable and intelligent energy utility, is an impending problem that needs to be arrested quickly. With the increasingly intensifying integration of smart devices in the smart grid infrastructure with other interconnected applications and the communication backbone is compelling both the energy users and the energy utilities to thoroughly look into the privacy and security issues of the smart grid. In this paper, we present challenges of the existing security mechanisms deployed in the smart grid framework and we tried to bring forward the unresolved problems that would highlight the security aspects of Smart Grid as a challenging area of research and development in the future.
2020-01-13
Guanyu, Chen, Yunjie, Han, Chang, Li, Changrui, Lin, Degui, Fang, Xiaohui, Rong.  2019.  Data Acquisition Network and Application System Based on 6LoWPAN and IPv6 Transition Technology. 2019 IEEE 2nd International Conference on Electronics Technology (ICET). :78–83.
In recent years, IPv6 will gradually replace IPv4 with IPv4 address exhaustion and the rapid development of the Low-Power Wide-Area network (LPWAN) wireless communication technology. This paper proposes a data acquisition and application system based on 6LoWPAN and IPv6 transition technology. The system uses 6LoWPAN and 6to4 tunnel to realize integration of the internal sensor network and Internet to improve the adaptability of the gateway and reduce the average forwarding delay and packet loss rate of small data packet. Moreover, we design and implement the functions of device access management, multiservice data storage and affair data service by combining the C/S architecture with the actual uploaded river quality data. The system has the advantages of flexible networking, low power consumption, rich IPv6 address, high communication security, and strong reusability.
2020-04-03
Saridou, Betty, Shiaeles, Stavros, Papadopoulos, Basil.  2019.  DDoS Attack Mitigation through Root-DNS Server: A Case Study. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:60—65.
Load balancing and IP anycast are traffic routing algorithms used to speed up delivery of the Domain Name System. In case of a DDoS attack or an overload condition, the value of these protocols is critical, as they can provide intrinsic DDoS mitigation with the failover alternatives. In this paper, we present a methodology for predicting the next DNS response in the light of a potential redirection to less busy servers, in order to mitigate the size of the attack. Our experiments were conducted using data from the Nov. 2015 attack of the Root DNS servers and Logistic Regression, k-Nearest Neighbors, Support Vector Machines and Random Forest as our primary classifiers. The models were able to successfully predict up to 83% of responses for Root Letters that operated on a small number of sites and consequently suffered the most during the attacks. On the other hand, regarding DNS requests coming from more distributed Root servers, the models demonstrated lower accuracy. Our analysis showed a correlation between the True Positive Rate metric and the number of sites, as well as a clear need for intelligent management of traffic in load balancing practices.
2020-01-13
Seidel, Felix, Krentz, Konrad-Felix, Meinel, Christoph.  2019.  Deep En-Route Filtering of Constrained Application Protocol (CoAP) Messages on 6LoWPAN Border Routers. 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). :201–206.
Devices on the Internet of Things (IoT) are usually battery-powered and have limited resources. Hence, energy-efficient and lightweight protocols were designed for IoT devices, such as the popular Constrained Application Protocol (CoAP). Yet, CoAP itself does not include any defenses against denial-of-sleep attacks, which are attacks that aim at depriving victim devices of entering low-power sleep modes. For example, a denial-of-sleep attack against an IoT device that runs a CoAP server is to send plenty of CoAP messages to it, thereby forcing the IoT device to expend energy for receiving and processing these CoAP messages. All current security solutions for CoAP, namely Datagram Transport Layer Security (DTLS), IPsec, and OSCORE, fail to prevent such attacks. To fill this gap, Seitz et al. proposed a method for filtering out inauthentic and replayed CoAP messages "en-route" on 6LoWPAN border routers. In this paper, we expand on Seitz et al.'s proposal in two ways. First, we revise Seitz et al.'s software architecture so that 6LoWPAN border routers can not only check the authenticity and freshness of CoAP messages, but can also perform a wide range of further checks. Second, we propose a couple of such further checks, which, as compared to Seitz et al.'s original checks, more reliably protect IoT devices that run CoAP servers from remote denial-of-sleep attacks, as well as from remote exploits. We prototyped our solution and successfully tested its compatibility with Contiki-NG's CoAP implementation.
2019-12-02
Takahashi, Akira, Tibouchi, Mehdi.  2019.  Degenerate Fault Attacks on Elliptic Curve Parameters in OpenSSL. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :371–386.
In this paper, we describe several practically exploitable fault attacks against OpenSSL's implementation of elliptic curve cryptography, related to the singular curve point decompression attacks of Blömer and Günther (FDTC2015) and the degenerate curve attacks of Neves and Tibouchi (PKC 2016). In particular, we show that OpenSSL allows to construct EC key files containing explicit curve parameters with a compressed base point. A simple single fault injection upon loading such a file yields a full key recovery attack when the key file is used for signing with ECDSA, and a complete recovery of the plaintext when the file is used for encryption using an algorithm like ECIES. The attack is especially devastating against curves with j-invariant equal to 0 such as the Bitcoin curve secp256k1, for which key recovery reduces to a single division in the base field. Additionally, we apply the present fault attack technique to OpenSSL's implementation of ECDH, by combining it with Neves and Tibouchi's degenerate curve attack. This version of the attack applies to usual named curve parameters with nonzero j-invariant, such as P192 and P256. Although it is typically more computationally expensive than the one against signatures and encryption, and requires multiple faulty outputs from the server, it can recover the entire static secret key of the server even in the presence of point validation. These various attacks can be mounted with only a single instruction skipping fault, and therefore can be easily injected using low-cost voltage glitches on embedded devices. We validated them in practice using concrete fault injection experiments on a Rapsberry Pi single board computer running the up to date OpenSSL command line tools-a setting where the threat of fault attacks is quite significant.
2020-02-17
Hassan, Mehmood, Mansoor, Khwaja, Tahir, Shahzaib, Iqbal, Waseem.  2019.  Enhanced Lightweight Cloud-assisted Mutual Authentication Scheme for Wearable Devices. 2019 International Conference on Applied and Engineering Mathematics (ICAEM). :62–67.
With the emergence of IoT, wearable devices are drawing attention and becoming part of our daily life. These wearable devices collect private information about their wearers. Mostly, a secure authentication process is used to verify a legitimate user that relies on the mobile terminal. Similarly, remote cloud services are used for verification and authentication of both wearable devices and wearers. Security is necessary to preserve the privacy of users. Some traditional authentication protocols are proposed which have vulnerabilities and are prone to different attacks like forgery, de-synchronization, and un-traceability issues. To address these vulnerabilities, recently, Wu et al. (2017) proposed a cloud-assisted authentication scheme which is costly in terms of computations required. Therefore this paper proposed an improved, lightweight and computationally efficient authentication scheme for wearable devices. The proposed scheme provides similar level of security as compared to Wu's (2017) scheme but requires 41.2% lesser computations.
Fett, Daniel, Hosseyni, Pedram, Küsters, Ralf.  2019.  An Extensive Formal Security Analysis of the OpenID Financial-Grade API. 2019 IEEE Symposium on Security and Privacy (SP). :453–471.
Forced by regulations and industry demand, banks worldwide are working to open their customers' online banking accounts to third-party services via web-based APIs. By using these so-called Open Banking APIs, third-party companies, such as FinTechs, are able to read information about and initiate payments from their users' bank accounts. Such access to financial data and resources needs to meet particularly high security requirements to protect customers. One of the most promising standards in this segment is the OpenID Financial-grade API (FAPI), currently under development in an open process by the OpenID Foundation and backed by large industry partners. The FAPI is a profile of OAuth 2.0 designed for high-risk scenarios and aiming to be secure against very strong attackers. To achieve this level of security, the FAPI employs a range of mechanisms that have been developed to harden OAuth 2.0, such as Code and Token Binding (including mTLS and OAUTB), JWS Client Assertions, and Proof Key for Code Exchange. In this paper, we perform a rigorous, systematic formal analysis of the security of the FAPI, based on an existing comprehensive model of the web infrastructure - the Web Infrastructure Model (WIM) proposed by Fett, Küsters, and Schmitz. To this end, we first develop a precise model of the FAPI in the WIM, including different profiles for read-only and read-write access, different flows, different types of clients, and different combinations of security features, capturing the complex interactions in a web-based environment. We then use our model of the FAPI to precisely define central security properties. In an attempt to prove these properties, we uncover partly severe attacks, breaking authentication, authorization, and session integrity properties. We develop mitigations against these attacks and finally are able to formally prove the security of a fixed version of the FAPI. Although financial applications are high-stakes environments, this work is the first to formally analyze and, importantly, verify an Open Banking security profile. By itself, this analysis is an important contribution to the development of the FAPI since it helps to define exact security properties and attacker models, and to avoid severe security risks before the first implementations of the standard go live. Of independent interest, we also uncover weaknesses in the aforementioned security mechanisms for hardening OAuth 2.0. We illustrate that these mechanisms do not necessarily achieve the security properties they have been designed for.
2020-01-28
Monaco, John V..  2019.  Feasibility of a Keystroke Timing Attack on Search Engines with Autocomplete. 2019 IEEE Security and Privacy Workshops (SPW). :212–217.
Many websites induce the browser to send network traffic in response to user input events. This includes websites with autocomplete, a popular feature on search engines that anticipates the user's query while they are typing. Websites with this functionality require HTTP requests to be made as the query input field changes, such as when the user presses a key. The browser responds to input events by generating network traffic to retrieve the search predictions. The traffic emitted by the client can expose the timings of keyboard input events which may lead to a keylogging side channel attack whereby the query is revealed through packet inter-arrival times. We investigate the feasibility of such an attack on several popular search engines by characterizing the behavior of each website and measuring information leakage at the network level. Three out of the five search engines we measure preserve the mutual information between keystrokes and timings to within 1% of what it is on the host. We describe the ways in which two search engines mitigate this vulnerability with minimal effects on usability.
2019-12-16
Zhu, Yan, Yang, Shuai, Chu, William Cheng-Chung, Feng, Rongquan.  2019.  FlashGhost: Data Sanitization with Privacy Protection Based on Frequent Colliding Hash Table. 2019 IEEE International Conference on Services Computing (SCC). :90–99.
Today's extensive use of Internet creates huge volumes of data by users in both client and server sides. Normally users don't want to store all the data in local as well as keep archive in the server. For some unwanted data, such as trash, cache and private data, needs to be deleted periodically. Explicit deletion could be applied to the local data, while it is a troublesome job. But there is no transparency to users on the personal data stored in the server. Since we have no knowledge of whether they're cached, copied and archived by the third parties, or sold by the service provider. Our research seeks to provide an automatic data sanitization system to make data could be self-destructing. Specifically, we give data a life cycle, which would be erased automatically when at the end of its life, and the destroyed data cannot be recovered by any effort. In this paper, we present FlashGhost, which is a system that meets this challenge through a novel integration of cryptography techniques with the frequent colliding hash table. In this system, data will be unreadable and rendered unrecoverable by overwriting multiple times after its validity period has expired. Besides, the system reliability is enhanced by threshold cryptography. We also present a mathematical model and verify it by a number of experiments, which demonstrate theoretically and experimentally our system is practical to use and meet the data auto-sanitization goal described above.
2020-03-02
Zheng, Zhengfan, Zheng, Bo, Wu, Yuechao, Chen, Shangui.  2019.  An Integrated Safety Management System Based on Ubiquitous Internet of Things in Electricity for Smart Pumped-storage Power Stations. 2019 4th International Conference on Intelligent Green Building and Smart Grid (IGBSG). :548–551.
The safety management is an important and fundamental task in the construction and operation of pumped-storage power stations. However, because of the traditional technical framework, the relevant systems are separated from each other, leading to a lot of disadvantages in application and performance. In order to meet the requirements of smart pumped-storage power stations, an integrated safety management system (ISMS) based on ubiquitous internet of things in electricity is proposed in this paper. The ISMS is divided into five layers including data display layer, data manipulation layer, data processing layer, data transmission layer and data acquisition layer. It consists of six modules, i.e., central control module, cave access control and personnel location module, video and security monitoring module, emergency broadcasting and communication module, geological warning module, and fall protection module. All modules are integrated into a unified information platform.
2020-02-24
Biswas, Sonam, Roy, Abhishek.  2019.  An Intrusion Detection System Based Secured Electronic Service Delivery Model. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :1316–1321.
Emergence of Information and Communication Technology (ICT) has facilitated its users to access electronic services through open channel like Internet. This approach of digital communication has its specific security lapses, which should be addressed properly to ensure Privacy, Integrity, Non-repudiation and Authentication (PINA) of information. During message communication, intruders may mount infringement attempts to compromise the communication. The situation becomes critical, if an user is identified by multiple identification numbers, as in that case, intruder have a wide window open to use any of its identification number to fulfill its ill intentions. To resolve this issue, author have proposed a single window based cloud service delivery model, where a smart card serves as a single interface to access multifaceted electronic services like banking, healthcare, employment, etc. To detect and prevent unauthorized access, in this paper, authors have focused on the intrusion detection system of the cloud service model during cloud banking transaction.
2019-11-25
Cui, Hongyan, Chen, Zunming, Xi, Yu, Chen, Hao, Hao, Jiawang.  2019.  IoT Data Management and Lineage Traceability: A Blockchain-based Solution. 2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops). :239–244.
The Internet of Things is stepping out of its infancy into full maturity, requiring massive data processing and storage. Unfortunately, because of the unique characteristics of resource constraints, short-range communication, and self-organization in IoT, it always resorts to the cloud or fog nodes for outsourced computation and storage, which has brought about a series of novel challenging security and privacy threats. For this reason, one of the critical challenges of having numerous IoT devices is the capacity to manage them and their data. A specific concern is from which devices or Edge clouds to accept join requests or interaction requests. This paper discusses a design concept for developing the IoT data management platform, along with a data management and lineage traceability implementation of the platform based on blockchain and smart contracts, which approaches the two major challenges: how to implement effective data management and enrich rational interoperability for trusted groups of linked Things; And how to settle conflicts between untrusted IoT devices and its requests taking into account security and privacy preserving. Experimental results show that the system scales well with the loss of computing and communication performance maintaining within the acceptable range, works well to effectively defend against unauthorized access and empower data provenance and transparency, which verifies the feasibility and efficiency of the design concept to provide privacy, fine-grained, and integrity data management over the IoT devices by introducing the blockchain-based data management platform.
2020-06-01
da Silva Andrade, Richardson B., Souto Rosa, Nelson.  2019.  MidSecThings: Assurance Solution for Security Smart Homes in IoT. 2019 IEEE 19th International Symposium on High Assurance Systems Engineering (HASE). :171–178.
The interest over building security-based solutions to reduce the vulnerability exploits and mitigate the risks associated with smart homes in IoT is growing. However, our investigation identified to architect and implement distributed security mechanisms is still a challenge because is necessary to handle security and privacy in IoT middleware with a strong focus. Our investigation, it was identified the significant proportion of the systems that did not address security and did not describe the security approach in any meaningful detail. The idea proposed in this work is to provide middleware aim to implement security mechanisms in smart home and contribute as how guide to beginner developers' IoT middleware. The advantages of using MidSecThings are to avoid leakage data, unavailable service, unidentification action and not authorized access over IoT devices in smart home.
2020-03-02
Ibrokhimov, Sanjar, Hui, Kueh Lee, Abdulhakim Al-Absi, Ahmed, lee, hoon jae, Sain, Mangal.  2019.  Multi-Factor Authentication in Cyber Physical System: A State of Art Survey. 2019 21st International Conference on Advanced Communication Technology (ICACT). :279–284.
Digital Multifactor authentication is one of the best ways to make secure authentication. It covers many different areas of a Cyber-connected world, including online payments, communications, access right management, etc. Most of the time, Multifactor authentication is little complex as it require extra step from users. With two-factor authentication, along with the user-ID and password, user also needs to enter a special code which they normally receive by short message service or some special code which they got in advance. This paper will discuss the evolution from single authentication to Multi-Factor Authentication (MFA) starting from Single-Factor Authentication (SFA) and through Two-Factor Authentication (2FA). In addition, this paper presents five high-level categories of features of user authentication in the gadget-free world including security, privacy, and usability aspects. These are adapted and extended from earlier research on web authentication methods. In conclusion, this paper gives future research directions and open problems that stem from our observations.
2020-06-01
Parikh, Sarang, Sanjay, H A, Shastry, K. Aditya, Amith, K K.  2019.  Multimodal Data Security Framework Using Steganography Approaches. 2019 International Conference on Communication and Electronics Systems (ICCES). :1997–2002.
Information or data is a very crucial resource. Hence securing the information becomes a critical task. Transfer and Communication mediums via which we send this information do not provide data security natively. Therefore, methods for data security have to be devised to protect the information from third party and unauthorized users. Information hiding strategies like steganography provide techniques for data encryption so that the unauthorized users cannot read it. This work is aimed at creating a novel method of Augmented Reality Steganography (ARSteg). ARSteg uses cloud for image and key storage that does not alter any attributes of an image such as size and colour scheme. Unlike, traditional algorithms such as Least Significant Bit (LSB) which changes the attributes of images, our approach uses well established encryption algorithm such as Advanced Encryption Standard (AES) for encryption and decryption. This system is further secured by many alternative means such as honey potting, tracking and heuristic intrusion detection that ensure that the transmitted messages are completely secure and no intrusions are allowed. The intrusions are prevented by detecting them immediately and neutralizing them.
2020-03-18
Djoko, Judicael B., Lange, Jack, Lee, Adam J..  2019.  NeXUS: Practical and Secure Access Control on Untrusted Storage Platforms using Client-Side SGX. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :401–413.
With the rising popularity of file-sharing services such as Google Drive and Dropbox in the workflows of individuals and corporations alike, the protection of client-outsourced data from unauthorized access or tampering remains a major security concern. Existing cryptographic solutions to this problem typically require server-side support, involve non-trivial key management on the part of users, and suffer from severe re-encryption penalties upon access revocations. This combination of performance overheads and management burdens makes this class of solutions undesirable in situations where performant, platform-agnostic, dynamic sharing of user content is required. We present NEXUS, a stackable filesystem that leverages trusted hardware to provide confidentiality and integrity for user files stored on untrusted platforms. NEXUS is explicitly designed to balance security, portability, and performance: it supports dynamic sharing of protected volumes on any platform exposing a file access API without requiring server-side support, enables the use of fine-grained access control policies to allow for selective sharing, and avoids the key revocation and file re-encryption overheads associated with other cryptographic approaches to access control. This combination of features is made possible by the use of a client-side Intel SGX enclave that is used to protect and share NEXUS volumes, ensuring that cryptographic keys never leave enclave memory and obviating the need to reencrypt files upon revocation of access rights. We implemented a NEXUS prototype that runs on top of the AFS filesystem and show that it incurs ×2 overhead for a variety of common file and database operations.
Banerjee, Rupam, Chattopadhyay, Arup Kumar, Nag, Amitava, Bose, Kaushik.  2019.  A Nobel Cryptosystem for Group Data Sharing in Cloud Storage. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0728–0731.
The biggest challenge of sharing data stored in cloud-storage is privacy-preservation. In this paper, we propose a simple yet effective solution for enforcing the security of private data stored in some cloud storage for sharing. We consider an environment where even if the cloud service provider is not-reliable or is compromised, our data still remain secure. The data Owner encrypts the private files using a secret key, file identifier and hash function and then uploads the cipher text files to the cloud. When a Data user requests access to a file, the owner establishes a key with the user and creates a new key, which is sent to the user. The user can then extract the original key by using the mutually established secret key and use it to decrypt the encrypted file. Thus we propose a system which is computationally simple yet provides a secure mechanism for sharing private data even over an untrusted cloud service provider.
2020-03-16
Udod, Kyryll, Kushnarenko, Volodymyr, Wesner, Stefan, Svjatnyj, Volodymyr.  2019.  Preservation System for Scientific Experiments in High Performance Computing: Challenges and Proposed Concept. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 2:809–813.
Continuously growing amount of research experiments using High Performance Computing (HPC) leads to the questions of research data management and in particular how to preserve a scientific experiment including all related data for long term for its future reproduction. This paper covers some challenges and possible solutions related to the preservation of scientific experiments on HPC systems and represents a concept of the preservation system for HPC computations. Storage of the experiment itself with some related data is not only enough for its future reproduction, especially in the long term. For that case preservation of the whole experiment's environment (operating system, used libraries, environment variables, input data, etc.) via containerization technology (e.g. using Docker, Singularity) is proposed. This approach allows to preserve the entire environment, but is not always possible on every HPC system because of security issues. And it also leaves a question, how to deal with commercial software that was used within the experiment. As a possible solution we propose to run a preservation process outside of the computing system on the web-server and to replace all commercial software inside the created experiment's image with open source analogues that should allow future reproduction of the experiment without any legal issues. The prototype of such a system was developed, the paper provides the scheme of the system, its main features and describes the first experimental results and further research steps.
2020-01-27
Inayoshi, Hiroki, Kakei, Shohei, Takimoto, Eiji, Mouri, Koichi, Saito, Shoichi.  2019.  Prevention of Data Leakage due to Implicit Information Flows in Android Applications. 2019 14th Asia Joint Conference on Information Security (AsiaJCIS). :103–110.
Dynamic Taint Analysis (DTA) technique has been developed for analysis and understanding behavior of Android applications and privacy policy enforcement. Meanwhile, implicit information flows (IIFs) are major concern of security researchers because IIFs can evade DTA technique easily and give attackers an advantage over the researchers. Some researchers suggested approaches to the issue and developed analysis systems supporting privacy policy enforcement against IIF-accompanied attacks; however, there is still no effective technique of comprehensive analysis and privacy policy enforcement against IIF-accompanied attacks. In this paper, we propose an IIF detection technique to enforce privacy policy against IIF-accompanied attacks in Android applications. We developed a new analysis tool, called Smalien, that can discover data leakage caused by IIF-contained information flows as well as explicit information flows. We demonstrated practicability of Smalien by applying it to 16 IIF tricks from ScrubDroid and two IIF tricks from DroidBench. Smalien enforced privacy policy successfully against all the tricks except one trick because the trick loads code dynamically from a remote server at runtime, and Smalien cannot analyze any code outside of a target application. The results show that our approach can be a solution to the current attacker-superior situation.
2020-03-23
Korenda, Ashwija Reddy, Afghah, Fatemeh, Cambou, Bertrand, Philabaum, Christopher.  2019.  A Proof of Concept SRAM-based Physically Unclonable Function (PUF) Key Generation Mechanism for IoT Devices. 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). :1–8.
This paper provides a proof of concept for using SRAM based Physically Unclonable Functions (PUFs) to generate private keys for IoT devices. PUFs are utilized, as there is inadequate protection for secret keys stored in the memory of the IoT devices. We utilize a custom-made Arduino mega shield to extract the fingerprint from SRAM chip on demand. We utilize the concepts of ternary states to exclude the cells which are easily prone to flip, allowing us to extract stable bits from the fingerprint of the SRAM. Using the custom-made software for our SRAM device, we can control the error rate of the PUF to achieve an adjustable memory-based PUF for key generation. We utilize several fuzzy extractor techniques based on using different error correction coding methods to generate secret keys from the SRAM PUF, and study the trade-off between the false authentication rate and false rejection rate of the PUF.
2020-05-04
Chen, Hanlin, Hu, Ming, Yan, Hui, Yu, Ping.  2019.  Research on Industrial Internet of Things Security Architecture and Protection Strategy. 2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS). :365–368.
Industrial Internet of Things (IIoT) is a fusion of industrial automation systems and IoT systems. It features comprehensive sensing, interconnected transmission, intelligent processing, self-organization and self-maintenance. Its applications span intelligent transportation, smart factories, and intelligence. Many areas such as power grid and intelligent environment detection. With the widespread application of IIoT technology, the cyber security threats to industrial IoT systems are increasing day by day, and information security issues have become a major challenge in the development process. In order to protect the industrial IoT system from network attacks, this paper aims to study the industrial IoT information security protection technology, and the typical architecture of industrial Internet of things system, and analyzes the network security threats faced by industrial Internet of things system according to the different levels of the architecture, and designs the security protection strategies applied to different levels of structures based on the specific means of network attack.
2020-03-23
Bothe, Alexander, Bauer, Jan, Aschenbruck, Nils.  2019.  RFID-assisted Continuous User Authentication for IoT-based Smart Farming. 2019 IEEE International Conference on RFID Technology and Applications (RFID-TA). :505–510.
Smart Farming is driven by the emergence of precise positioning systems and Internet of Things technologies which have already enabled site-specific applications, sustainable resource management, and interconnected machinery. Nowadays, so-called Farm Management Information Systems (FMISs) enable farm-internal interconnection of agricultural machines and implements and, thereby, allow in-field data exchange and the orchestration of collaborative agricultural processes. Machine data is often directly logged during task execution. Moreover, interconnection of farms, agricultural contractors, and marketplaces ease the collaboration. However, current FMISs lack in security and particularly in user authentication. In this paper, we present a security architecture for a decentralized, manufacturer-independent, and open-source FMIS. Special attention is turned on the Radio Frequency Identification (RFID)-based continuous user authentication which greatly improves security and credibility of automated documentation, while at the same time preserves usability in practice.
2020-04-06
Mumtaz, Majid, Akram, Junaid, Ping, Luo.  2019.  An RSA Based Authentication System for Smart IoT Environment. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :758–765.
Authentication is the fundamental security service used in almost all remote applications. All such sensitive applications over an open network need authentication mechanism that should be delivered in a trusted way. In this paper, we design an RSA based authentication system for smart IoT environment over the air network using state-of-the-art industry standards. Our system provide security services including X.509 certificate, RSA based Public Key Infrastructure (PKI), challenge/response protocols with the help of proxy induced security service provider. We describe an innovative system model, protocol design, system architecture and evaluation against known threats. Also the implemented solution designed as an add on service for multiple other sensitive applications (smart city apps, cyber physical systems etc.) which needs the support of X.509 certificate based on hard tokens to populate other security services including confidentiality, integrity, non-repudiation, privacy and anonymity of the identities. The proposed scheme is evaluated against known vulnerabilities and given detail comparisons with popular known authentication schemes. The result shows that our proposed scheme mitigate all the known security risks and provide highest level assurance to smart gadgets.