Found 788 results

Filters: Keyword is Servers  [Clear All Filters]
Niu, S., Chen, L., Liu, W..  2020.  Attribute-Based Keyword Search Encryption Scheme with Verifiable Ciphertext via Blockchains. 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 9:849–853.
In order to realize the sharing of data by multiple users on the blockchain, this paper proposes an attribute-based searchable encryption with verifiable ciphertext scheme via blockchain. The scheme uses the public key algorithm to encrypt the keyword, the attribute-based encryption algorithm to encrypt the symmetric key, and the symmetric key to encrypt the file. The keyword index is stored on the blockchain, and the ciphertext of the symmetric key and file are stored on the cloud server. The scheme uses searchable encryption technology to achieve secure search on the blockchain, uses the immutability of the blockchain to ensure the security of the keyword ciphertext, uses verify algorithm guarantees the integrity of the data on the cloud. When the user's attributes need to be changed or the ciphertext access structure is changed, the scheme uses proxy re-encryption technology to implement the user's attribute revocation, and the authority center is responsible for the whole attribute revocation process. The security proof shows that the scheme can achieve ciphertext security, keyword security and anti-collusion. In addition, the numerical results show that the proposed scheme is effective.
Whaiduzzaman, Md, Oliullah, Khondokar, Mahi, Md. Julkar Nayeen, Barros, Alistair.  2020.  AUASF: An Anonymous Users Authentication Scheme for Fog-IoT Environment. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—7.
Authentication is a challenging and emerging issue for Fog-IoT security paradigms. The fog nodes toward large-scale end-users offer various interacted IoT services. The authentication process usually involves expressing users' personal information such as username, email, and password to the Authentication Server (AS). However, users are not intended to express their identities or information over the fog or cloud servers. Hence, we have proposed an Anonymous User Authentication Scheme for Fog-IoT (AUASF) to keep the anonymity existence of the IoT users and detect the intruders. To provide anonymity, the user can send encrypted credentials such as username, email, and mobile number through the Cloud Service Provider (CSP) for registration. IoT user receives the response with a default password and a secret Id from the CSP. After that, the IoT user submits the default password for first-time access to Fog Service Provider (FSP). The FSP assigns a One Time Password (OTP) to each user for further access. The developed scheme is equipped with hash functions, symmetric encryptions, and decryptions for security perceptions across fog that serves better than the existing anonymity schemes.
Chinchawade, Amit Jaykumar, Lamba, Onkar Singh.  2020.  Authentication Schemes and Security Issues in Internet Of Everything (IOE) Systems. 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN). :342–345.
Nowadays, Internet Of Everything (IOE) has demanded for a wide range of applications areas. IOE is started to replaces an Internet Of things (IOT). IOE is a combination of massive number of computing elements and sensors, people, processes and data through the Internet infrastructure. Device to Device communication and interfacing of Wireless Sensor network with IOE can makes any system as a Smart System. With the increased the use of Internet and Internet connected devices has opportunities for hackers to launch attacks on unprecedented scale and impact. The IOE can serve the varied security in the various sectors like manufacturing, agriculture, smart grid, payments, IoT gateways, healthcare and industrial ecosystems. To secure connections among people, process, data, and things, is a major challenge in Internet of Everything.. This paper focuses on various security Issues and Authentication Schemes in the IOE systems.
Zhang, Zichao, de Amorim, Arthur Azevedo, Jia, Limin, Pasareanu, Corina S..  2020.  Automating Compositional Analysis of Authentication Protocols. 2020 Formal Methods in Computer Aided Design (FMCAD). :113–118.
Modern verifiers for cryptographic protocols can analyze sophisticated designs automatically, but require the entire code of the protocol to operate. Compositional techniques, by contrast, allow us to verify each system component separately, against its own guarantees and assumptions about other components and the environment. Compositionality helps protocol design because it explains how the design can evolve and when it can run safely along other protocols and programs. For example, it might say that it is safe to add some functionality to a server without having to patch the client. Unfortunately, while compositional frameworks for protocol verification do exist, they require non-trivial human effort to identify specifications for the components of the system, thus hindering their adoption. To address these shortcomings, we investigate techniques for automated, compositional analysis of authentication protocols, using automata-learning techniques to synthesize assumptions for protocol components. We report preliminary results on the Needham-Schroeder-Lowe protocol, where our synthesized assumption was capable of lowering verification time while also allowing us to verify protocol variants compositionally.
Ti, Y., Wu, C., Yu, C., Kuo, S..  2020.  Benchmarking Dynamic Searchable Symmetric Encryption Scheme for Cloud-Internet of Things Applications. IEEE Access. 8:1715–1732.
Recently, the rapid development of Internet of things (IoT) has resulted in the generation of a considerable amount of data, which should be stored. Therefore, it is necessary to develop methods that can easily capture, save, and modify these data. The data generated using IoT contain private information; therefore sufficient security features should be incorporated to ensure that potential attackers cannot access the data. Researchers from various fields are attempting to achieve data security. One of the major challenges is that IoT is a paradigm of how each device in the Internet infrastructure is interconnected to a globally dynamic network. When searching in dynamic cloud-stored data, sensitive data can be easily leaked. IoT data storage and retrieval from untrusted cloud servers should be secure. Searchable symmetric encryption (SSE) is a vital technology in the field of cloud storage. SSE allows users to use keywords to search for data in an untrusted cloud server but the keywords and the data content are concealed from the server. However, an SSE database is seldom used by cloud operators because the data stored on the cloud server is often modified. The server cannot update the data without decryption because the data are encrypted by the user. Therefore, dynamic SSE (DSSE) has been developed in recent years to support the aforementioned requirements. Instead of decrypting the data stored by customers, DSSE adds or deletes encrypted data on the server. A number of DSSE systems based on linked list structures or blind storage (a new primitive) have been proposed. From the perspective of functionality, extensibility, and efficiency, these DSSE systems each have their own advantages and drawbacks. The most crucial aspect of a system that is used in the cloud industry is the trade-off between performance and security. Therefore, we compared the efficiency and security of multiple DSSE systems and identified their shortcomings to develop an improved system.
Kfoury, E. F., Khoury, D., AlSabeh, A., Gomez, J., Crichigno, J., Bou-Harb, E..  2020.  A Blockchain-based Method for Decentralizing the ACME Protocol to Enhance Trust in PKI. 2020 43rd International Conference on Telecommunications and Signal Processing (TSP). :461–465.
Blockchain technology is the cornerstone of digital trust and systems' decentralization. The necessity of eliminating trust in computing systems has triggered researchers to investigate the applicability of Blockchain to decentralize the conventional security models. Specifically, researchers continuously aim at minimizing trust in the well-known Public Key Infrastructure (PKI) model which currently requires a trusted Certificate Authority (CA) to sign digital certificates. Recently, the Automated Certificate Management Environment (ACME) was standardized as a certificate issuance automation protocol. It minimizes the human interaction by enabling certificates to be automatically requested, verified, and installed on servers. ACME only solved the automation issue, but the trust concerns remain as a trusted CA is required. In this paper we propose decentralizing the ACME protocol by using the Blockchain technology to enhance the current trust issues of the existing PKI model and to eliminate the need for a trusted CA. The system was implemented and tested on Ethereum Blockchain, and the results showed that the system is feasible in terms of cost, speed, and applicability on a wide range of devices including Internet of Things (IoT) devices.
Ferreira, B., Portela, B., Oliveira, T., Borges, G., Domingos, H. J., Leitao, J..  2020.  Boolean Searchable Symmetric Encryption with Filters on Trusted Hardware. IEEE Transactions on Dependable and Secure Computing. :1–1.
The prevalence and availability of cloud infrastructures has made them the de facto solution for storing and archiving data, both for organizations and individual users. Nonetheless, the cloud's wide spread adoption is still hindered by dependability and security concerns, particularly in applications with large data collections where efficient search and retrieval services are also major requirements. This leads to an increased tension between security, efficiency, and search expressiveness. In this paper we tackle this tension by proposing BISEN, a new provably-secure boolean searchable symmetric encryption scheme that improves these three complementary dimensions by exploring the design space of isolation guarantees offered by novel commodity hardware such as Intel SGX, abstracted as Isolated Execution Environments (IEEs). BISEN is the first scheme to support multiple users and enable highly expressive and arbitrarily complex boolean queries, with minimal information leakage regarding performed queries and accessed data, and verifiability regarding fully malicious adversaries. Furthermore, BISEN extends the traditional SSE model to support filter functions on search results based on generic metadata created by the users. Experimental validation and comparison with the state of art shows that BISEN provides better performance with enriched search semantics and security properties.
Al-Dhaqm, A., Razak, S. A., Dampier, D. A., Choo, K. R., Siddique, K., Ikuesan, R. A., Alqarni, A., Kebande, V. R..  2020.  Categorization and Organization of Database Forensic Investigation Processes. IEEE Access. 8:112846—112858.
Database forensic investigation (DBFI) is an important area of research within digital forensics. It's importance is growing as digital data becomes more extensive and commonplace. The challenges associated with DBFI are numerous, and one of the challenges is the lack of a harmonized DBFI process for investigators to follow. In this paper, therefore, we conduct a survey of existing literature with the hope of understanding the body of work already accomplished. Furthermore, we build on the existing literature to present a harmonized DBFI process using design science research methodology. This harmonized DBFI process has been developed based on three key categories (i.e. planning, preparation and pre-response, acquisition and preservation, and analysis and reconstruction). Furthermore, the DBFI has been designed to avoid confusion or ambiguity, as well as providing practitioners with a systematic method of performing DBFI with a higher degree of certainty.
Banakar, V., Upadhya, P., Keshavan, M..  2020.  CIED - rapid composability of rack scale resources using Capability Inference Engine across Datacenters. 2020 IEEE Infrastructure Conference. :1–4.
There are multiple steps involved in transitioning a server from the factory to being fully provisioned for an intended workload. These steps include finding the optimal slot for the hardware and to compose the required resources on the hardware for the intended workload. There are many different factors that influence the placement of server hardware in the datacenter, such as physical limitations to connect to a network be it Ethernet or storage networks, power requirements, temperature/cooling considerations, and physical space, etc. In addition to this, there may be custom requirements driven by workload policies (such as security, data privacy, power redundancy, etc.). Once the server has been placed in the right slot it needs to be configured with the appropriate resources for the intended workload. CIED will provide a ranked list of locations for server placement based on the intended workload, connectivity and physical requirements of the server. Once the server is placed in the suggested slot, the solution automatically discovers the server and composes the required resources (compute, storage and networks) for running the appropriate workload. CIED reduces the overall time taken to move hardware from factory to production and also maximizes the server hardware utilization while minimizing downtime by physically placing the resources optimally. From the case study that was undertaken, the time taken to transition a server from factory to being fully provisioned was proportional to the number of devices in the datacenter. With CIED this time is constant irrespective of the complexity or the number of devices in a datacenter.
Raj, C., Khular, L., Raj, G..  2020.  Clustering Based Incident Handling For Anomaly Detection in Cloud Infrastructures. 2020 10th International Conference on Cloud Computing, Data Science Engineering (Confluence). :611–616.
Incident Handling for Cloud Infrastructures focuses on how the clustering based and non-clustering based algorithms can be implemented. Our research focuses in identifying anomalies and suspicious activities that might happen inside a Cloud Infrastructure over available datasets. A brief study has been conducted, where a network statistics dataset the NSL-KDD, has been chosen as the model to be worked upon, such that it can mirror the Cloud Infrastructure and its components. An important aspect of cloud security is to implement anomaly detection mechanisms, in order to monitor the incidents that inhibit the development and the efficiency of the cloud. Several methods have been discovered which help in achieving our present goal, some of these are highlighted as the following; by applying algorithm such as the Local Outlier Factor to cancel the noise created by irrelevant data points, by applying the DBSCAN algorithm which can detect less denser areas in order to identify their cause of clustering, the K-Means algorithm to generate positive and negative clusters to identify the anomalous clusters and by applying the Isolation Forest algorithm in order to implement decision based approach to detect anomalies. The best algorithm would help in finding and fixing the anomalies efficiently and would help us in developing an Incident Handling model for the Cloud.
Gomes, G., Dias, L., Correia, M..  2020.  CryingJackpot: Network Flows and Performance Counters against Cryptojacking. 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA). :1—10.
Cryptojacking, the appropriation of users' computational resources without their knowledge or consent to obtain cryp-tocurrencies, is a widespread attack, relatively easy to implement and hard to detect. Either browser-based or binary, cryptojacking lacks robust and reliable detection solutions. This paper presents a hybrid approach to detect cryptojacking where no previous knowledge about the attacks or training data is needed. Our Cryp-tojacking Intrusion Detection Approach, Cryingjackpot, extracts and combines flow and performance counter-based features, aggregating hosts with similar behavior by using unsupervised machine learning algorithms. We evaluate Cryingjackpot experimentally with both an artificial and a hybrid dataset, achieving F1-scores up to 97%.
Lekshmi, M. M., Subramanian, N..  2020.  Data Auditing in Cloud Storage using Smart Contract. 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT). :999–1002.
In general, Cloud storage is considered as a distributed model. Here, the data is usually stored on remote servers to properly maintain, back up and make it accessible to clients over a network, whenever required. Cloud storage providers keep the data and processes to oversee it on capacity servers based on secure virtualization methods. A security framework is proposed for auditing the cloud data, which makes use of the proposed blockchain technology. This ensures to efficiently maintain the data integrity. The blockchain structure inspects the mutation of operational information and thereby ensures the data security. Usually, the data auditing scheme is widely used in a Third Party Auditor (TPA), which is a centralized entity that the client is forced to trust, even if the credibility is not guaranteed. To avoid the participation of TPA, a decentralised scheme is suggested, where it uses a smart contract for auditing the cloud data. The working of smart contracts is based on blockchain. Ethereum is used to deploy a smart contract thereby eliminating the need of a foreign source in the data auditing process.
Sendhil, R., Amuthan, A..  2020.  A Descriptive Study on Homomorphic Encryption Schemes for Enhancing Security in Fog Computing. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :738–743.
Nowadays, Fog Computing gets more attention due to its characteristics. Fog computing provides more advantages in related to apply with the latest technology. On the other hand, there is an issue about the data security over processing of data. Fog Computing encounters many security challenges like false data injection, violating privacy in edge devices and integrity of data, etc. An encryption scheme called Homomorphic Encryption (HME) technique is used to protect the data from the various security threats. This homomorphic encryption scheme allows doing manipulation over the encrypted data without decrypting it. This scheme can be implemented in many systems with various crypto-algorithms. This homomorphic encryption technique is mainly used to retain the privacy and to process the stored encrypted data on a remote server. This paper addresses the terminologies of Fog Computing, work flow and properties of the homomorphic encryption algorithm, followed by exploring the application of homomorphic encryption in various public key cryptosystems such as RSA and Pailier. It focuses on various homomorphic encryption schemes implemented by various researchers such as Brakerski-Gentry-Vaikuntanathan model, Improved Homomorphic Cryptosystem, Upgraded ElGamal based Algebric homomorphic encryption scheme, In-Direct rapid homomorphic encryption scheme which provides integrity of data.
Billah, Mohammad Masum, Khan, Niaz Ahmed, Ullah, Mohammad Woli, Shahriar, Faisal, Rashid, Syed Zahidur, Ahmed, Md Razu.  2020.  Developing a Secured and Reliable Vehicular Communication System and Its Performance Evaluation. 2020 IEEE Region 10 Symposium (TENSYMP). :60–65.
The Ad-hoc Vehicular networks (VANET) was developed through the implementation of the concepts of ad-hoc mobile networks(MANET), which is swiftly maturing, promising, emerging wireless communication technology nowadays. Vehicular communication enables us to communicate with other vehicles and Roadside Infrastructure Units (RSU) to share information pertaining to the safety system, traffic analysis, Authentication, privacy, etc. As VANETs operate in an open wireless connectivity system, it increases permeable of variant type's security issues. Security concerns, however, which are either generally seen in ad-hoc networks or utterly unique to VANET, present significant challenges. Access Control List (ACL) can be an efficient feature to solve such security issues by permitting statements to access registered specific IP addresses in the network and deny statement unregistered IP addresses in the system. To establish such secured VANETs, the License number of the vehicle will be the Identity Number, which will be assigned via a DNS server by the Traffic Certification Authority (TCA). TCA allows registered vehicles to access the nearest two or more regions. For special vehicles, public access should be restricted by configuring ACL on a specific IP. Smart-card given by TCA can be used to authenticate a subscriber by checking previous records during entry to a new network area. After in-depth analysis of Packet Delivery Ratio (PDR), Packet Loss Ratio (PLR), Average Delay, and Handover Delay, this research offers more secure and reliable communication in VANETs.
Tsareva, P., Voronova, A., Vetrov, B., Ivanov, A..  2020.  Digital Dynamic Chaos-Based Encryption System in a Research Project of the Department of Marine Electronics. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :538–541.
The problems of synthesis of a digital data encryption system based on dynamic chaos in a research project carried out at the Department of Marine Electronics (SMTU) are considered. A description is made of the problems of generating a chaotic (random) signal in computer systems with calculations with finite accuracy.
Kumar, M., Singh, A. K..  2020.  Distributed Intrusion Detection System using Blockchain and Cloud Computing Infrastructure. 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184). :248—252.
Intrusion Detection System is a well-known term in the domain of Network and Information Security. It's one of the important components of the Network and Information Security infrastructure. Host Intrusion Detection System (HIDS) helps to detect unauthorized use, abnormal and malicious activities on the host, whereas Network Intrusion Detection System (NIDS) helps to detect attacks and intrusion on networks. Various researchers are actively working on different approaches to improving the IDS performance and many improvements have been achieved. However, development in many other technologies and newly emerging techniques always opens the doors of opportunity to add a sharp edge to IDS and to make it more robust and reliable. This paper proposes the development of Distributed Intrusion Detection System (DIDS) using emerging and promising technologies like Blockchain upon a stable platform like cloud infrastructure.
Intharawijitr, Krittin, Harvey, Paul, Imai, Pierre.  2020.  A Feasibility Study of Cache in Smart Edge Router for Web-Access Accelerator. 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC). :360–365.
Regardless of the setting, edge computing has drawn much attention from both the academic and industrial communities. For edge computing, content delivery networks are both a concrete and production deployable use case. While viable at the WAN or telco edge scale, it is unclear if this extends to others, such as in home WiFi routers, as has been assumed by some. In this work-in-progress, we present an initial study on the viability of using smart edge WiFi routers as a caching location. We describe the simulator we created to test this, as well as the analysis of the results obtained. We use 1 day of e-commerce web log traffic from a public data set, as well as a sampled subset of our own site - part of an ecosystem of over 111 million users. We show that in the best case scenario, smart edge routers are inappropriate for e-commerce web caching.
Song, X., Dong, C., Yuan, D., Xu, Q., Zhao, M..  2020.  Forward Private Searchable Symmetric Encryption with Optimized I/O Efficiency. IEEE Transactions on Dependable and Secure Computing. 17:912–927.
Recently, several practical attacks raised serious concerns over the security of searchable encryption. The attacks have brought emphasis on forward privacy, which is the key concept behind solutions to the adaptive leakage-exploiting attacks, and will very likely to become a must-have property of all new searchable encryption schemes. For a long time, forward privacy implies inefficiency and thus most existing searchable encryption schemes do not support it. Very recently, Bost (CCS 2016) showed that forward privacy can be obtained without inducing a large communication overhead. However, Bost's scheme is constructed with a relatively inefficient public key cryptographic primitive, and has poor I/O performance. Both of the deficiencies significantly hinder the practical efficiency of the scheme, and prevent it from scaling to large data settings. To address the problems, we first present FAST, which achieves forward privacy and the same communication efficiency as Bost's scheme, but uses only symmetric cryptographic primitives. We then present FASTIO, which retains all good properties of FAST, and further improves I/O efficiency. We implemented the two schemes and compared their performance with Bost's scheme. The experiment results show that both our schemes are highly efficient.
Kaur, Ketanpreet, Sharma, Vikrant, Sachdeva, Monika.  2020.  Framework for FOGIoT based Smart Video Surveillance System (SVSS). 2020 International Conference on Computational Performance Evaluation (ComPE). :797–799.
In this ever updating digitalized world, everything is connected with just few touches away. Our phone is connected with things around us, even we can see live video of our home, shop, institute or company on the phone. But we can't track suspicious activity 24*7 hence needed a smart system to track down any suspicious activity taking place, so it automatically notifies us before any robbery or dangerous activity takes place. We have proposed a framework to tackle down this security matter with the help of sensors enabled cameras(IoT) connected through a FOG layer hence called FOGIoT which consists of small servers configured with Human Activity Analysis Algorithm. Any suspicious activity analyzed will be reported to responsible personnel and the due action will be taken place.
Tirupathi, Chittibabu, Hamdaoui, Bechir, Rayes, Ammar.  2020.  HybridCache: AI-Assisted Cloud-RAN Caching with Reduced In-Network Content Redundancy. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
The ever-increasing growth of urban populations coupled with recent mobile data usage trends has led to an unprecedented increase in wireless devices, services and applications, with varying quality of service needs in terms of latency, data rate, and connectivity. To cope with these rising demands and challenges, next-generation wireless networks have resorted to cloud radio access network (Cloud-RAN) technology as a way of reducing latency and network traffic. A concrete example of this is New York City's LinkNYC network infrastructure, which replaces the city's payphones with kiosk-like structures, called Links, to provide fast and free public Wi-Fi access to city users. When enabled with data storage capability, these Links can, for example, play the role of edge cloud devices to allow in-network content caching so that access latency and network traffic are reduced. In this paper, we propose HybridCache, a hybrid proactive and reactive in-network caching scheme that reduces content access latency and network traffic congestion substantially. It does so by first grouping edge cloud devices in clusters to minimize intra-cluster content access latency and then enabling cooperative-proactively and reactively-caching using LSTM-based prediction to minimize in-network content redundancy. Using the LinkNYC network as the backbone infrastructure for evaluation, we show that HybridCache reduces the number of hops that content needs to traverse and increases cache hit rates, thereby reducing both network traffic and content access latency.
Uthayashangar, S., Abinaya, J., Harshini, V., Jayavardhani, R..  2020.  Image And Text Encrypted Data With Authorized Deduplication In Cloud. 2020 International Conference on System, Computation, Automation and Networking (ICSCAN). :1—5.
In this paper, the role re-encryption is used to avoid the privacy data lekage and also to avoid the deduplication in a secure role re-encryption system(SRRS). And also it checks for the proof of ownership for to identify whether the user is authorized user or not. This is for the efficiency. Role re-encrytion method is to share the access key for the corresponding authorized user for accessing the particular file without the leakage of privacy data. In our project we are using both the avoidance of text and digital images. For example we have the personal images in our mobile, handheld devices, and in the desktop etc., So, as these images have to keep secure and so we are using the encryption for to increase the high security. The text file also important for the users now-a-days. It has to keep secure in a cloud server. Digital images have to be protected over the communication, however generally personal identification details like copies of pan card, Passport, ATM, etc., to store on one's own pc. So, we are protecting the text file and image data for avoiding the duplication in our proposed system.
Yogita, Gupta, N. Kumar.  2020.  Integrity Auditing with Attribute based ECMRSA Algorithm for Cloud Data Outsourcing. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS). :1284–1289.
Cloud computing is a vast area within which large amounts of data are exchanged through cloud services and has fully grown with its on-demand technology. Due to these versatile cloud services, sensitive data will be stored on cloud storage servers and it is also used to dynamically control a number of problems: security, privacy, data privacy, data sharing, and integrity across cloud servers. Moreover, the legitimacy and control of data access should be maintained in this extended environment. So, one of the most important concepts of cryptographic techniques in cloud computing environment is Attribute Based Encryption (ABE). In this research work, data auditing or integrity checking is considered as an area of concern for securing th cloud storage. In data auditing approach, an auditor inspects and verifies the data file integrity without having any knowledge about the content of file and sends the verification report to the data owner. In this research, Elliptical Curve Modified RSA (ECMRSA) is proposed along with Modified MD5 algorithm which is used for attribute-based cloud data integrity verification, in which data user or owner uploads their encrypted data files at cloud data server and send the auditing request to the Third-Party Auditor (TPA) for verification of their data files. The Third-Party Auditor (TPA) challenges the data server for ensuring the integrity of data files on behalf of the data owners. After verification of integrity of data file auditor sends the audit report to the owner. The proposed algorithm integrates the auditing scheme with public key encryption with homomorphic algorithm which generates digital signature or hash values of data files on encrypted files. The result analysis is performed on time complexity by evaluating encryption time, GenProof time and VerifyProof Time and achieved improvement in resolving time complexity as compared to existing techiques.
Niloy, Nishat Tasnim, Islam, Md. Shariful.  2020.  IntellCache: An Intelligent Web Caching Scheme for Multimedia Contents. 2020 Joint 9th International Conference on Informatics, Electronics Vision (ICIEV) and 2020 4th International Conference on Imaging, Vision Pattern Recognition (icIVPR). :1–6.
The traditional reactive web caching system is getting less popular day by day due to its inefficiency in handling the overwhelming requests for multimedia content. An intelligent web caching system intends to take optimal cache decisions by predicting future popular contents (FPC) proactively. In recent years, a few approaches have proposed some intelligent caching system where they were concerned about proactive caching. Those works intensified the importance of FPC prediction using the prediction models. However, only FPC prediction may not help to get the optimal solution in every scenario. In this paper, a technique named IntellCache has been proposed that increases the caching efficiency by taking a cache decision i.e. content storing decision before storing the predicted FPC. Different deep learning models such as- multilayer perceptron (MLP), Long short-term memory (LSTM) of Recurrent Neural Network (RNN) and ConvLSTM a combination of LSTM and Convolutional Neural Network (CNN) are compared to identify the most efficient model for FPC. The information on the contents of 18 years from the MovieLens data repository has been mined to evaluate the proposed approach. Results show that this proposed scheme outperforms previous solutions by achieving a higher cache hit ratio and lower average delay and thus, ensures users' satisfaction.
Lyu, L..  2020.  Lightweight Crypto-Assisted Distributed Differential Privacy for Privacy-Preserving Distributed Learning. 2020 International Joint Conference on Neural Networks (IJCNN). :1–8.
The appearance of distributed learning allows multiple participants to collaboratively train a global model, where instead of directly releasing their private training data with the server, participants iteratively share their local model updates (parameters) with the server. However, recent attacks demonstrate that sharing local model updates is not sufficient to provide reasonable privacy guarantees, as local model updates may result in significant privacy leakage about local training data of participants. To address this issue, in this paper, we present an alternative approach that combines distributed differential privacy (DDP) with a three-layer encryption protocol to achieve a better privacy-utility tradeoff than the existing DP-based approaches. An unbiased encoding algorithm is proposed to cope with floating-point values, while largely reducing mean squared error due to rounding. Our approach dispenses with the need for any trusted server, and enables each party to add less noise to achieve the same privacy and similar utility guarantees as that of the centralized differential privacy. Preliminary analysis and performance evaluation confirm the effectiveness of our approach, which achieves significantly higher accuracy than that of local differential privacy approach, and comparable accuracy to the centralized differential privacy approach.
Shi, W., Liu, S., Zhang, J., Zhang, R..  2020.  A Location-aware Computation Offloading Policy for MEC-assisted Wireless Mesh Network. 2020 IEEE/CIC International Conference on Communications in China (ICCC Workshops). :53–58.
Mobile edge computing (MEC), an emerging technology, has the characteristics of low latency, mobile energy savings, and context-awareness. As a type of access network, wireless mesh network (WMN) has gained wide attention due to its flexible network architecture, low deployment cost, and self-organization. The combination of MEC and WMN can solve the shortcomings of traditional wireless communication such as storage capacity, privacy, and security. In this paper, we propose a location-aware (LA) algorithm to cognize the location and a location-aware offloading policy (LAOP) algorithm considering the energy consumption and time delay. Simulation results show that the proposed LAOP algorithm can obtain a higher completion rate and lower average processing delay compared with the other two methods.