Found 397 results

Filters: Keyword is Tools  [Clear All Filters]
Angermeir, Florian, Voggenreiter, Markus, Moyón, Fabiola, Mendez, Daniel.  2021.  Enterprise-Driven Open Source Software: A Case Study on Security Automation. 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). :278—287.
Agile and DevOps are widely adopted by the industry. Hence, integrating security activities with industrial practices, such as continuous integration (CI) pipelines, is necessary to detect security flaws and adhere to regulators’ demands early. In this paper, we analyze automated security activities in CI pipelines of enterprise-driven open source software (OSS). This shall allow us, in the long-run, to better understand the extent to which security activities are (or should be) part of automated pipelines. In particular, we mine publicly available OSS repositories and survey a sample of project maintainers to better understand the role that security activities and their related tools play in their CI pipelines. To increase transparency and allow other researchers to replicate our study (and to take different perspectives), we further disclose our research artefacts.Our results indicate that security activities in enterprise-driven OSS projects are scarce and protection coverage is rather low. Only 6.83% of the analyzed 8,243 projects apply security automation in their CI pipelines, even though maintainers consider security to be rather important. This alerts industry to keep the focus on vulnerabilities of 3rd Party software and it opens space for other improvements of practice which we outline in this manuscript.
Xu, Lei, Gao, Zhimin, Fan, Xinxin, Chen, Lin, Kim, Hanyee, Suh, Taeweon, Shi, Weidong.  2020.  Blockchain Based End-to-End Tracking System for Distributed IoT Intelligence Application Security Enhancement. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1028–1035.
IoT devices provide a rich data source that is not available in the past, which is valuable for a wide range of intelligence applications, especially deep neural network (DNN) applications that are data-thirsty. An established DNN model provides useful analysis results that can improve the operation of IoT systems in turn. The progress in distributed/federated DNN training further unleashes the potential of integration of IoT and intelligence applications. When a large number of IoT devices are deployed in different physical locations, distributed training allows training modules to be deployed to multiple edge data centers that are close to the IoT devices to reduce the latency and movement of large amounts of data. In practice, these IoT devices and edge data centers are usually owned and managed by different parties, who do not fully trust each other or have conflicting interests. It is hard to coordinate them to provide end-to-end integrity protection of the DNN construction and application with classical security enhancement tools. For example, one party may share an incomplete data set with others, or contribute a modified sub DNN model to manipulate the aggregated model and affect the decision-making process. To mitigate this risk, we propose a novel blockchain based end-to-end integrity protection scheme for DNN applications integrated with an IoT system in the edge computing environment. The protection system leverages a set of cryptography primitives to build a blockchain adapted for edge computing that is scalable to handle a large number of IoT devices. The customized blockchain is integrated with a distributed/federated DNN to offer integrity and authenticity protection services.
Golagha, M., Pretschner, A., Briand, L. C..  2020.  Can We Predict the Quality of Spectrum-based Fault Localization? 2020 IEEE 13th International Conference on Software Testing, Validation and Verification (ICST). :4–15.
Fault localization and repair are time-consuming and tedious. There is a significant and growing need for automated techniques to support such tasks. Despite significant progress in this area, existing fault localization techniques are not widely applied in practice yet and their effectiveness varies greatly from case to case. Existing work suggests new algorithms and ideas as well as adjustments to the test suites to improve the effectiveness of automated fault localization. However, important questions remain open: Why is the effectiveness of these techniques so unpredictable? What are the factors that influence the effectiveness of fault localization? Can we accurately predict fault localization effectiveness? In this paper, we try to answer these questions by collecting 70 static, dynamic, test suite, and fault-related metrics that we hypothesize are related to effectiveness. Our analysis shows that a combination of only a few static, dynamic, and test metrics enables the construction of a prediction model with excellent discrimination power between levels of effectiveness (eight metrics yielding an AUC of .86; fifteen metrics yielding an AUC of.88). The model hence yields a practically useful confidence factor that can be used to assess the potential effectiveness of fault localization. Given that the metrics are the most influential metrics explaining the effectiveness of fault localization, they can also be used as a guide for corrective actions on code and test suites leading to more effective fault localization.
Brauckmann, A., Goens, A., Castrillon, J..  2020.  ComPy-Learn: A toolbox for exploring machine learning representations for compilers. 2020 Forum for Specification and Design Languages (FDL). :1–4.
Deep Learning methods have not only shown to improve software performance in compiler heuristics, but also e.g. to improve security in vulnerability prediction or to boost developer productivity in software engineering tools. A key to the success of such methods across these use cases is the expressiveness of the representation used to abstract from the program code. Recent work has shown that different such representations have unique advantages in terms of performance. However, determining the best-performing one for a given task is often not obvious and requires empirical evaluation. Therefore, we present ComPy-Learn, a toolbox for conveniently defining, extracting, and exploring representations of program code. With syntax-level language information from the Clang compiler frontend and low-level information from the LLVM compiler backend, the tool supports the construction of linear and graph representations and enables an efficient search for the best-performing representation and model for tasks on program code.
Kellogg, M., Schäf, M., Tasiran, S., Ernst, M. D..  2020.  Continuous Compliance. 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). :511–523.
Vendors who wish to provide software or services to large corporations and governments must often obtain numerous certificates of compliance. Each certificate asserts that the software satisfies a compliance regime, like SOC or the PCI DSS, to protect the privacy and security of sensitive data. The industry standard for obtaining a compliance certificate is an auditor manually auditing source code. This approach is expensive, error-prone, partial, and prone to regressions. We propose continuous compliance to guarantee that the codebase stays compliant on each code change using lightweight verification tools. Continuous compliance increases assurance and reduces costs. Continuous compliance is applicable to any source-code compliance requirement. To illustrate our approach, we built verification tools for five common audit controls related to data security: cryptographically unsafe algorithms must not be used, keys must be at least 256 bits long, credentials must not be hard-coded into program text, HTTPS must always be used instead of HTTP, and cloud data stores must not be world-readable. We evaluated our approach in three ways. (1) We applied our tools to over 5 million lines of open-source software. (2) We compared our tools to other publicly-available tools for detecting misuses of encryption on a previously-published benchmark, finding that only ours are suitable for continuous compliance. (3) We deployed a continuous compliance process at AWS, a large cloud-services company: we integrated verification tools into the compliance process (including auditors accepting their output as evidence) and ran them on over 68 million lines of code. Our tools and the data for the former two evaluations are publicly available.
Sarker, Partha S., Singh Saini, Amandeep, Sajan, K S, Srivastava, Anurag K..  2020.  CP-SAM: Cyber-Power Security Assessment and Resiliency Analysis Tool for Distribution System. 2020 Resilience Week (RWS). :188–193.
Cyber-power resiliency analysis of the distribution system is becoming critical with increase in adverse cyberevents. Distribution network operators need to assess and analyze the resiliency of the system utilizing the analytical tool with a carefully designed visualization and be driven by data and model-based analytics. This work introduces the Cyber-Physical Security Assessment Metric (CP-SAM) visualization tool to assist operators in ensuring the energy supply to critical loads during or after a cyber-attack. CP-SAM also provides decision support to operators utilizing measurement data and distribution power grid model and through well-designed visualization. The paper discusses the concepts of cyber-physical resiliency, software design considerations, open-source software components, and use cases for the tool to demonstrate the implementation and importance of the developed tool.
Faqir, Nada, En-Nahnahi, Noureddine, Boumhidi, Jaouad.  2020.  Deep Q-learning Approach for Congestion Problem In Smart Cities. 2020 Fourth International Conference On Intelligent Computing in Data Sciences (ICDS). :1–6.
Traffic congestion is a critical problem in urban area. In this study, our objective is the control of traffic lights in an urban environment, in order to avoid traffic jams and optimize vehicle traffic; we aim to minimize the total waiting time. Our system is based on a new paradigm, which is deep reinforcement learning; it can automatically learn all the useful characteristics of traffic data and develop a strategy optimizing adaptive traffic light control. Our system is coupled to a microscopic simulator based on agents (Simulation of Urban MObility - SUMO) providing a synthetic but realistic environment in which the exploration of the results of potential regulatory actions can be carried out.
Jaafar, Fehmi, Avellaneda, Florent, Alikacem, El-Hackemi.  2020.  Demystifying the Cyber Attribution: An Exploratory Study. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :35–40.
Current cyber attribution approaches proposed to use a variety of datasets and analytical techniques to distill the information that will be useful to identify cyber attackers. In contrast, practitioners and researchers in cyber attribution face several technical and regulation challenges. In this paper, we describe the main challenges of cyber attribution and present a state of the art of used approaches to face these challenges. Then, we will present an exploratory study to perform cyber attacks attribution based on pattern recognition from real data. In our study, we are using attack pattern discovery and identification based on real data collection and analysis.
Abirami, R., Wise, D. C. Joy Winnie, Jeeva, R., Sanjay, S..  2020.  Detecting Security Vulnerabilities in Website using Python. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). :844–846.
On the current website, there are many undeniable conditions and there is the existence of new plot holes. If data link is normally extracted on each of the websites, it becomes difficult to evaluate each vulnerability, with tolls such as XS S, SQLI, and other such existing tools for vulnerability assessment. Integrated testing criteria for vulnerabilities are met. In addition, the response should be automated and systematic. The primary value of vulnerability Buffer will be made of predefined and self-formatted code written in python, and the software is automated to send reports to their respective users. The vulnerabilities are tried to be classified as accessible. OWASP is the main resource for developing and validating web security processes.
Zheng, Gang, Xu, Xinzhong, Wang, Chao.  2020.  An Effective Target Address Generation Method for IPv6 Address Scan. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :73–77.
In recent years, IPv6 and its application are more and more widely deployed. Most network devices support and open IPv6 protocol stack. The security of IPv6 network is also concerned. In the IPv6 network security technology, address scanning is a key and difficult point. This paper presents a TGAs-based IPv6 address scanning method. It takes the known alive IPv6 addresses as input, and then utilizes the information entropy and clustering technology to mine the distribution law of seed addresses. Then, the final optimized target address set can be obtained by expanding from the seed address set according to the distribution law. Experimental results show that it can effectively improve the efficiency of IPv6 address scanning.
Zheng, Wei, Gao, Jialiang, Wu, Xiaoxue, Xun, Yuxing, Liu, Guoliang, Chen, Xiang.  2020.  An Empirical Study of High-Impact Factors for Machine Learning-Based Vulnerability Detection. 2020 IEEE 2nd International Workshop on Intelligent Bug Fixing (IBF). :26–34.
Ahstract-Vulnerability detection is an important topic of software engineering. To improve the effectiveness and efficiency of vulnerability detection, many traditional machine learning-based and deep learning-based vulnerability detection methods have been proposed. However, the impact of different factors on vulnerability detection is unknown. For example, classification models and vectorization methods can directly affect the detection results and code replacement can affect the features of vulnerability detection. We conduct a comparative study to evaluate the impact of different classification algorithms, vectorization methods and user-defined variables and functions name replacement. In this paper, we collected three different vulnerability code datasets. These datasets correspond to different types of vulnerabilities and have different proportions of source code. Besides, we extract and analyze the features of vulnerability code datasets to explain some experimental results. Our findings from the experimental results can be summarized as follows: (i) the performance of using deep learning is better than using traditional machine learning and BLSTM can achieve the best performance. (ii) CountVectorizer can improve the performance of traditional machine learning. (iii) Different vulnerability types and different code sources will generate different features. We use the Random Forest algorithm to generate the features of vulnerability code datasets. These generated features include system-related functions, syntax keywords, and user-defined names. (iv) Datasets without user-defined variables and functions name replacement will achieve better vulnerability detection results.
Ramasubramanian, Muthukumaran, Muhammad, Hassan, Gurung, Iksha, Maskey, Manil, Ramachandran, Rahul.  2020.  ES2Vec: Earth Science Metadata Keyword Assignment using Domain-Specific Word Embeddings. 2020 SoutheastCon. :1—6.
Earth science metadata keyword assignment is a challenging problem. Dataset curators select appropriate keywords from the Global Change Master Directory (GCMD) set of keywords. The keywords are integral part of search and discovery of these datasets. Hence, selection of keywords are crucial in increasing the discoverability of datasets. Utilizing machine learning techniques, we provide users with automated keyword suggestions as an improved approach to complement manual selection. We trained a machine learning model that leverages the semantic embedding ability of Word2Vec models to process abstracts and suggest relevant keywords. A user interface tool we built to assist data curators in assignment of such keywords is also described.
Cuzzocrea, A., Maio, V. De, Fadda, E..  2020.  Experimenting and Assessing a Distributed Privacy-Preserving OLAP over Big Data Framework: Principles, Practice, and Experiences. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :1344—1350.
OLAP is an authoritative analytical tool in the emerging big data analytics context, with particular regards to the target distributed environments (e.g., Clouds). Here, privacy-preserving OLAP-based big data analytics is a critical topic, with several amenities in the context of innovative big data application scenarios like smart cities, social networks, bio-informatics, and so forth. The goal is that of providing privacy preservation during OLAP analysis tasks, with particular emphasis on the privacy of OLAP aggregates. Following this line of research, in this paper we provide a deep contribution on experimenting and assessing a state-of-the-art distributed privacy-preserving OLAP framework, named as SPPOLAP, whose main benefit is that of introducing a completely-novel privacy notion for OLAP data cubes.
Stan, O., Bitton, R., Ezrets, M., Dadon, M., Inokuchi, M., Yoshinobu, O., Tomohiko, Y., Elovici, Y., Shabtai, A..  2020.  Extending Attack Graphs to Represent Cyber-Attacks in Communication Protocols and Modern IT Networks. IEEE Transactions on Dependable and Secure Computing. :1–1.
An attack graph is a method used to enumerate the possible paths that an attacker can take in the organizational network. MulVAL is a known open-source framework used to automatically generate attack graphs. MulVAL's default modeling has two main shortcomings. First, it lacks the ability to represent network protocol vulnerabilities, and thus it cannot be used to model common network attacks, such as ARP poisoning. Second, it does not support advanced types of communication, such as wireless and bus communication, and thus it cannot be used to model cyber-attacks on networks that include IoT devices or industrial components. In this paper, we present an extended network security model for MulVAL that: (1) considers the physical network topology, (2) supports short-range communication protocols, (3) models vulnerabilities in the design of network protocols, and (4) models specific industrial communication architectures. Using the proposed extensions, we were able to model multiple attack techniques including: spoofing, man-in-the-middle, and denial of service attacks, as well as attacks on advanced types of communication. We demonstrate the proposed model in a testbed which implements a simplified network architecture comprised of both IT and industrial components
Hwang, S., Ryu, S..  2020.  Gap between Theory and Practice: An Empirical Study of Security Patches in Solidity. 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE). :542–553.
Ethereum, one of the most popular blockchain platforms, provides financial transactions like payments and auctions through smart contracts. Due to the immense interest in smart contracts in academia, the research community of smart contract security has made a significant improvement recently. Researchers have reported various security vulnerabilities in smart contracts, and developed static analysis tools and verification frameworks to detect them. However, it is unclear whether such great efforts from academia has indeed enhanced the security of smart contracts in reality. To understand the security level of smart contracts in the wild, we empirically studied 55,046 real-world Ethereum smart contracts written in Solidity, the most popular programming language used by Ethereum smart contract developers. We first examined how many well-known vulnerabilities the Solidity compiler has patched, and how frequently the Solidity team publishes compiler releases. Unfortunately, we observed that many known vulnerabilities are not yet patched, and some patches are not even sufficient to avoid their target vulnerabilities. Subsequently, we investigated whether smart contract developers use the most recent compiler with vulnerabilities patched. We reported that developers of more than 98% of real-world Solidity contracts still use older compilers without vulnerability patches, and more than 25% of the contracts are potentially vulnerable due to the missing security patches. To understand actual impacts of the missing patches, we manually investigated potentially vulnerable contracts that are detected by our static analyzer and identified common mistakes by Solidity developers, which may cause serious security issues such as financial loss. We detected hundreds of vulnerable contracts and about one fourth of the vulnerable contracts are used by thousands of people. We recommend the Solidity team to make patches that resolve known vulnerabilities correctly, and developers to use the latest Solidity compiler to avoid missing security patches.
Oliver, J., Ali, M., Hagen, J..  2020.  HAC-T and Fast Search for Similarity in Security. 2020 International Conference on Omni-layer Intelligent Systems (COINS). :1–7.
Similarity digests have gained popularity for many security applications like blacklisting/whitelisting, and finding similar variants of malware. TLSH has been shown to be particularly good at hunting similar malware, and is resistant to evasion as compared to other similarity digests like ssdeep and sdhash. Searching and clustering are fundamental tools which help the security analysts and security operations center (SOC) operators in hunting and analyzing malware. Current approaches which aim to cluster malware are not scalable enough to keep up with the vast amount of malware and goodware available in the wild. In this paper, we present techniques which allow for fast search and clustering of TLSH hash digests which can aid analysts to inspect large amounts of malware/goodware. Our approach builds on fast nearest neighbor search techniques to build a tree-based index which performs fast search based on TLSH hash digests. The tree-based index is used in our threshold based Hierarchical Agglomerative Clustering (HAC-T) algorithm which is able to cluster digests in a scalable manner. Our clustering technique can cluster digests in O (n logn) time on average. We performed an empirical evaluation by comparing our approach with many standard and recent clustering techniques. We demonstrate that our approach is much more scalable and still is able to produce good cluster quality. We measured cluster quality using purity on 10 million samples obtained from VirusTotal. We obtained a high purity score in the range from 0.97 to 0.98 using labels from five major anti-virus vendors (Kaspersky, Microsoft, Symantec, Sophos, and McAfee) which demonstrates the effectiveness of the proposed method.
Noiprasong, P., Khurat, A..  2020.  An IDS Rule Redundancy Verification. 2020 17th International Joint Conference on Computer Science and Software Engineering (JCSSE). :110—115.
Intrusion Detection System (IDS) is a network security software and hardware widely used to detect anomaly network traffics by comparing the traffics against rules specified beforehand. Snort is one of the most famous open-source IDS system. To write a rule, Snort specifies structure and values in Snort manual. This specification is expressive enough to write in different way with the same meaning. If there are rule redundancy, it could distract performance. We, thus, propose a proof of semantical issues for Snort rule and found four pairs of Snort rule combinations that can cause redundancy. In addition, we create a tool to verify such redundancy between two rules on the public rulesets from Snort community and Emerging threat. As a result of our test, we found several redundancy issues in public rulesets if the user enables commented rules.
Korać, D., Damjanović, B., Simić, D..  2020.  Information Security in M-learning Systems: Challenges and Threats of Using Cookies. 2020 19th International Symposium INFOTEH-JAHORINA (INFOTEH). :1—6.
The trend of rapid development of mobile technologies has highlighted new challenges and threats regarding the information security by the using cookies in mobile learning (m-learning) systems. In order to overcome these challenges and threats, this paper has identified two main objectives. First, to give a review of most common types to cookies and second, to consider the challenges and threats regarding cookies with aspects that are directly related to issues of security and privacy. With these objectives is possible to bridge security gaps in m-learning systems. Moreover, the identified potential challenges and threats are discussed with the given proposals of pragmatic solutions for their mitigating or reducing. The findings of this research may help students to rise security awareness and security behavior in m-learning systems, and to better understand on-going security challenges and threats in m-learning systems.
Zhang, Chi, Chen, Jinfu, Cai, Saihua, Liu, Bo, Wu, Yiming, Geng, Ye.  2020.  iTES: Integrated Testing and Evaluation System for Software Vulnerability Detection Methods. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1455–1460.
To find software vulnerabilities using software vulnerability detection technology is an important way to ensure the system security. Existing software vulnerability detection methods have some limitations as they can only play a certain role in some specific situations. To accurately analyze and evaluate the existing vulnerability detection methods, an integrated testing and evaluation system (iTES) is designed and implemented in this paper. The main functions of the iTES are:(1) Vulnerability cases with source codes covering common vulnerability types are collected automatically to form a vulnerability cases library; (2) Fourteen methods including static and dynamic vulnerability detection are evaluated in iTES, involving the Windows and Linux platforms; (3) Furthermore, a set of evaluation metrics is designed, including accuracy, false positive rate, utilization efficiency, time cost and resource cost. The final evaluation and test results of iTES have a good guiding significance for the selection of appropriate software vulnerability detection methods or tools according to the actual situation in practice.
Everson, Douglas, Cheng, Long.  2020.  Network Attack Surface Simplification for Red and Blue Teams. 2020 IEEE Secure Development (SecDev). :74–80.
Network port scans are a key first step to developing a true understanding of a network-facing attack surface. However in large-scale networks, the data resulting from such scans can be too numerous for Red Teams to process for manual and semiautomatic testing. Indiscriminate port scans can also compromise a Red Team seeking to quickly gain a foothold on a network. A large attack surface can even complicate Blue Team activities like threat hunting. In this paper we provide a cluster analysis methodology designed to group similar hosts to reduce security team workload and Red Team observability. We also measure the Internet-facing network attack surface of 13 organizations by clustering their hosts based on similarity. Through a case study we demonstrate how the output of our clustering technique provides new insight to both Red and Blue Teams, allowing them to quickly identify potential high-interest points on the attack surface.
Paulsen, Brandon, Wang, Jingbo, Wang, Jiawei, Wang, Chao.  2020.  NEURODIFF: Scalable Differential Verification of Neural Networks using Fine-Grained Approximation. 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). :784–796.
As neural networks make their way into safety-critical systems, where misbehavior can lead to catastrophes, there is a growing interest in certifying the equivalence of two structurally similar neural networks - a problem known as differential verification. For example, compression techniques are often used in practice for deploying trained neural networks on computationally- and energy-constrained devices, which raises the question of how faithfully the compressed network mimics the original network. Unfortunately, existing methods either focus on verifying a single network or rely on loose approximations to prove the equivalence of two networks. Due to overly conservative approximation, differential verification lacks scalability in terms of both accuracy and computational cost. To overcome these problems, we propose NEURODIFF, a symbolic and fine-grained approximation technique that drastically increases the accuracy of differential verification on feed-forward ReLU networks while achieving many orders-of-magnitude speedup. NEURODIFF has two key contributions. The first one is new convex approximations that more accurately bound the difference of two networks under all possible inputs. The second one is judicious use of symbolic variables to represent neurons whose difference bounds have accumulated significant error. We find that these two techniques are complementary, i.e., when combined, the benefit is greater than the sum of their individual benefits. We have evaluated NEURODIFF on a variety of differential verification tasks. Our results show that NEURODIFF is up to 1000X faster and 5X more accurate than the state-of-the-art tool.
Chen, Z., Chen, J., Meng, W..  2020.  A New Dynamic Conditional Proxy Broadcast Re-Encryption Scheme for Cloud Storage and Sharing. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :569–576.
Security of cloud storage and sharing is concerned for years since a semi-trusted party, Cloud Server Provider (CSP), has access to user data on cloud server that may leak users' private data without constraint. Intuitively, an efficient solution of protecting cloud data is to encrypt it before uploading to the cloud server. However, a new requirement, data sharing, makes it difficult to manage secret keys among data owners and target users. Therefore conditional proxy broadcast re-encryption technology (CPBRE) is proposed in recent years to provide data encryption and sharing approaches for cloud environment. It enables a data owner to upload encrypted data to the cloud server and a third party proxy can re-encrypted cloud data under certain condition to a new ciphertext so that target users can decrypt re-encrypted data using their own private key. But few CPBRE schemes are applicable for a dynamic cloud environment. In this paper, we propose a new dynamic conditional proxy broadcast reencryption scheme that can be dynamic in system user setting and target user group. The initialization phase does not require a fixed system user setup so that users can join or leave the system in any time. And data owner can dynamically change the group of user he wants to share data with. We also provide security analysis which proves our scheme to be secure against CSP, and performance analysis shows that our scheme exceeds other schemes in terms of functionality and resource cost.
Kunz, Immanuel, Schneider, Angelika, Banse, Christian.  2020.  Privacy Smells: Detecting Privacy Problems in Cloud Architectures. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1324—1331.
Many organizations are still reluctant to move sensitive data to the cloud. Moreover, data protection regulations have established considerable punishments for violations of privacy and security requirements. Privacy, however, is a concept that is difficult to measure and to demonstrate. While many privacy design strategies, tactics and patterns have been proposed for privacy-preserving system design, it is difficult to evaluate an existing system with regards to whether these strategies have or have not appropriately been implemented. In this paper we propose indicators for a system's non-compliance with privacy design strategies, called privacy smells. To that end we first identify concrete metrics that measure certain aspects of existing privacy design strategies. We then define smells based on these metrics and discuss their limitations and usefulness. We identify these indicators on two levels of a cloud system: the data flow level and the access control level. Using a cloud system built in Microsoft Azure we show how the metrics can be measured technically and discuss the differences to other cloud providers, namely Amazon Web Services and Google Cloud Platform. We argue that while it is difficult to evaluate the privacy-awareness in a cloud system overall, certain privacy aspects in cloud systems can be mapped to useful metrics that can indicate underlying privacy problems. With this approach we aim at enabling cloud users and auditors to detect deep-rooted privacy problems in cloud systems.
Ditton, S., Tekeoglu, A., Bekiroglu, K., Srinivasan, S..  2020.  A Proof of Concept Denial of Service Attack Against Bluetooth IoT Devices. 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). :1—6.
Bluetooth technologies have widespread applications in personal area networks, device-to-device communications and forming ad hoc networks. Studying Bluetooth devices security is a challenging task as they lack support for monitor mode available with other wireless networks (e.g. 802.11 WiFi). In addition, the frequency-hoping spread spectrum technique used in its operation necessitates special hardware and software to study its operation. This investigation examines methods for analyzing Bluetooth devices' security and presents a proof-of-concept DoS attack on the Link Manager Protocol (LMP) layer using the InternalBlue framework. Through this study, we demonstrate a method to study Bluetooth device security using existing tools without requiring specialized hardware. Consequently, the methods proposed in the paper can be used to study Bluetooth security in many applications.
Chang, Rong N., Bhaskaran, Kumar, Dey, Prasenjit, Hsu, Hsianghan, Takeda, Seiji, Hama, Toshiyuki.  2020.  Realizing A Composable Enterprise Microservices Fabric with AI-Accelerated Material Discovery API Services. 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). :313–320.
The complexity of building, deploying, and managing cross-organizational enterprise computing services with self-service, security, and quality assurances has been increasing exponentially in the era of hybrid multiclouds. AI-accelerated material discovery capabilities, for example, are desirable for enterprise application users to consume through business API services with assurance of satisfactory nonfunctional properties, e.g., enterprise-compliant self-service management of sharable sensitive data and machine learning capabilities at Internet scale. This paper presents a composable microservices based approach to creating and continuously improving enterprise computing services. Moreover, it elaborates on several key architecture design decisions for Navarch, a composable enterprise microservices fabric that facilitates consuming, managing, and composing enterprise API services. Under service management model of individual administration, every Navarch microservice is a managed composable API service that can be provided by an internal organization, an enterprise partner, or a public service provider. This paper also illustrates a Navarch-enabled systematic and efficient approach to transforming an AI-accelerated material discovery tool into secure, scalable, and composable enterprise microservices. Performance of the microservices can be continuously improved by exploiting advanced heterogeneous microservice hosting infrastructures. Factual comparative performance analyses are provided before the paper concludes with future work.