Biblio

Found 214 results

Filters: Keyword is Tools  [Clear All Filters]
2020-04-03
Künnemann, Robert, Esiyok, Ilkan, Backes, Michael.  2019.  Automated Verification of Accountability in Security Protocols. 2019 IEEE 32nd Computer Security Foundations Symposium (CSF). :397—39716.
Accountability is a recent paradigm in security protocol design which aims to eliminate traditional trust assumptions on parties and hold them accountable for their misbehavior. It is meant to establish trust in the first place and to recognize and react if this trust is violated. In this work, we discuss a protocol-agnostic definition of accountability: a protocol provides accountability (w.r.t. some security property) if it can identify all misbehaving parties, where misbehavior is defined as a deviation from the protocol that causes a security violation. We provide a mechanized method for the verification of accountability and demonstrate its use for verification and attack finding on various examples from the accountability and causality literature, including Certificate Transparency and Krollˆ\textbackslashtextbackslashprimes Accountable Algorithms protocol. We reach a high degree of automation by expressing accountability in terms of a set of trace properties and show their soundness and completeness.
2020-04-10
Baral, Gitanjali, Arachchilage, Nalin Asanka Gamagedara.  2019.  Building Confidence not to be Phished Through a Gamified Approach: Conceptualising User's Self-Efficacy in Phishing Threat Avoidance Behaviour. 2019 Cybersecurity and Cyberforensics Conference (CCC). :102—110.
Phishing attacks are prevalent and humans are central to this online identity theft attack, which aims to steal victims' sensitive and personal information such as username, password, and online banking details. There are many antiphishing tools developed to thwart against phishing attacks. Since humans are the weakest link in phishing, it is important to educate them to detect and avoid phishing attacks. One can argue self-efficacy is one of the most important determinants of individual's motivation in phishing threat avoidance behaviour, which has co-relation with knowledge. The proposed research endeavours on the user's self-efficacy in order to enhance the individual's phishing threat avoidance behaviour through their motivation. Using social cognitive theory, we explored that various knowledge attributes such as observational (vicarious) knowledge, heuristic knowledge and structural knowledge contributes immensely towards the individual's self-efficacy to enhance phishing threat prevention behaviour. A theoretical framework is then developed depicting the mechanism that links knowledge attributes, self-efficacy, threat avoidance motivation that leads to users' threat avoidance behaviour. Finally, a gaming prototype is designed incorporating the knowledge elements identified in this research that aimed to enhance individual's self-efficacy in phishing threat avoidance behaviour.
2020-03-27
Jadidi, Mahya Soleimani, Zaborski, Mariusz, Kidney, Brian, Anderson, Jonathan.  2019.  CapExec: Towards Transparently-Sandboxed Services. 2019 15th International Conference on Network and Service Management (CNSM). :1–5.
Network services are among the riskiest programs executed by production systems. Such services execute large quantities of complex code and process data from arbitrary — and untrusted — network sources, often with high levels of system privilege. It is desirable to confine system services to a least-privileged environment so that the potential damage from a malicious attacker can be limited, but existing mechanisms for sandboxing services require invasive and system-specific code changes and are insufficient to confine broad classes of network services. Rather than sandboxing one service at a time, we propose that the best place to add sandboxing to network services is in the service manager that starts those services. As a first step towards this vision, we propose CapExec, a process supervisor that can execute a single service within a sandbox based on a service declaration file in which, required resources whose limited access to are supported by Caper services, are specified. Using the Capsicum compartmentalization framework and its Casper service framework, CapExec provides robust application sandboxing without requiring any modifications to the application itself. We believe that this is the first step towards ubiquitous sandboxing of network services without the costs of virtualization.
2020-03-23
Rustgi, Pulkit, Fung, Carol.  2019.  Demo: DroidNet - An Android Permission Control Recommendation System Based on Crowdsourcing. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :737–738.
Mobile and web application security, particularly the areas of data privacy, has raised much concerns from the public in recent years. Most applications, or apps for short, are installed without disclosing full information to users and clearly stating what the application has access to, which often raises concern when users become aware of unnecessary information being collected. Unfortunately, most users have little to no technical expertise in regards to what permissions should be turned on and can only rely on their intuition and past experiences to make relatively uninformed decisions. To solve this problem, we developed DroidNet, which is a crowd-sourced Android recommendation tool and framework. DroidNet alleviates privacy concerns and presents users with high confidence permission control recommendations based on the decision from expert users who are using the same apps. This paper explains the general framework, principles, and model behind DroidNet while also providing an experimental setup design which shows the effectiveness and necessity for such a tool.
2020-03-09
Nilizadeh, Shirin, Noller, Yannic, Pasareanu, Corina S..  2019.  DifFuzz: Differential Fuzzing for Side-Channel Analysis. 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). :176–187.
Side-channel attacks allow an adversary to uncover secret program data by observing the behavior of a program with respect to a resource, such as execution time, consumed memory or response size. Side-channel vulnerabilities are difficult to reason about as they involve analyzing the correlations between resource usage over multiple program paths. We present DifFuzz, a fuzzing-based approach for detecting side-channel vulnerabilities related to time and space. DifFuzz automatically detects these vulnerabilities by analyzing two versions of the program and using resource-guided heuristics to find inputs that maximize the difference in resource consumption between secret-dependent paths. The methodology of DifFuzz is general and can be applied to programs written in any language. For this paper, we present an implementation that targets analysis of Java programs, and uses and extends the Kelinci and AFL fuzzers. We evaluate DifFuzz on a large number of Java programs and demonstrate that it can reveal unknown side-channel vulnerabilities in popular applications. We also show that DifFuzz compares favorably against Blazer and Themis, two state-of-the-art analysis tools for finding side-channels in Java programs.
2020-05-04
Jie, Bao, Liu, Jingju, Wang, Yongjie, Zhou, Xuan.  2019.  Digital Ant Mechanism and Its Application in Network Security. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :710–714.
Digital ant technology is a new distributed and self-organization cyberspace defense paradigm. This paper describes digital ants system's developing process, characteristics, system architecture and mechanisms to illustrate its superiority, searches the possible applications of digital ants system. The summary of the paper and the trends of digital ants system are pointed out.
2020-02-17
Papakonstantinou, Nikolaos, Linnosmaa, Joonas, Alanen, Jarmo, Bashir, Ahmed Z., O'Halloran, Bryan, Van Bossuyt, Douglas L..  2019.  Early Hybrid Safety and Security Risk Assessment Based on Interdisciplinary Dependency Models. 2019 Annual Reliability and Maintainability Symposium (RAMS). :1–7.
Safety and security of complex critical infrastructures are very important for economic, environmental and social reasons. The complexity of these systems introduces difficulties in the identification of safety and security risks that emerge from interdisciplinary interactions and dependencies. The discovery of safety and security design weaknesses late in the design process and during system operation can lead to increased costs, additional system complexity, delays and possibly undesirable compromises to address safety and security weaknesses.
Hassan, Mehmood, Mansoor, Khwaja, Tahir, Shahzaib, Iqbal, Waseem.  2019.  Enhanced Lightweight Cloud-assisted Mutual Authentication Scheme for Wearable Devices. 2019 International Conference on Applied and Engineering Mathematics (ICAEM). :62–67.
With the emergence of IoT, wearable devices are drawing attention and becoming part of our daily life. These wearable devices collect private information about their wearers. Mostly, a secure authentication process is used to verify a legitimate user that relies on the mobile terminal. Similarly, remote cloud services are used for verification and authentication of both wearable devices and wearers. Security is necessary to preserve the privacy of users. Some traditional authentication protocols are proposed which have vulnerabilities and are prone to different attacks like forgery, de-synchronization, and un-traceability issues. To address these vulnerabilities, recently, Wu et al. (2017) proposed a cloud-assisted authentication scheme which is costly in terms of computations required. Therefore this paper proposed an improved, lightweight and computationally efficient authentication scheme for wearable devices. The proposed scheme provides similar level of security as compared to Wu's (2017) scheme but requires 41.2% lesser computations.
2020-05-08
Elmaghrabi, Azza Yousif, Eljack, Sarah Mustafa.  2019.  Enhancement of Moodle learning Management System Regarding Quizzes Security and Stability Problems. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1—7.
This study aims to enhance the security of Moodle system environment during the Execution of online exams, Taking into consideration the most common problems facing online exams and working to solve them. This was handled by improving the security performance of Moodle Quiz tool, which is one of the most important tools in the learning Management system as general and in Moodle system as well. In this paper we include two enhancement aspects: The first aspect is solving the problem of losing the answers during sudden short disconnection of the network because of the server crash or any other reasons, the second aspect is Increasing the level of confidentiality of e-Quiz by preventing accessing the Quiz from more than one computer or browser at the same time. In order to verify the efficiency of the new quiz tool features, the upgraded tool have been tested using an experimental test Moodle site.
2020-03-16
Singh, Rina, Graves, Jeffrey A., Anantharaj, Valentine, Sukumar, Sreenivas R..  2019.  Evaluating Scientific Workflow Engines for Data and Compute Intensive Discoveries. 2019 IEEE International Conference on Big Data (Big Data). :4553–4560.
Workflow engines used to script scientific experiments involving numerical simulation, data analysis, instruments, edge sensors, and artificial intelligence have to deal with the complexities of hardware, software, resource availability, and the collaborative nature of science. In this paper, we survey workflow engines used in data-intensive and compute-intensive discovery pipelines from scientific disciplines such as astronomy, high energy physics, earth system science, bio-medicine, and material science and present a qualitative analysis of their respective capabilities. We compare 5 popular workflow engines and their differentiated approach to job orchestration, job launching, data management and provenance, security authentication, ease-ofuse, workflow description, and scripting semantics. The comparisons presented in this paper allow practitioners to choose the appropriate engine for their scientific experiment and lead to recommendations for future work.
2019-09-23
Zheng, N., Alawini, A., Ives, Z. G..  2019.  Fine-Grained Provenance for Matching ETL. 2019 IEEE 35th International Conference on Data Engineering (ICDE). :184–195.
Data provenance tools capture the steps used to produce analyses. However, scientists must choose among workflow provenance systems, which allow arbitrary code but only track provenance at the granularity of files; provenance APIs, which provide tuple-level provenance, but incur overhead in all computations; and database provenance tools, which track tuple-level provenance through relational operators and support optimization, but support a limited subset of data science tasks. None of these solutions are well suited for tracing errors introduced during common ETL, record alignment, and matching tasks - for data types such as strings, images, etc. Scientists need new capabilities to identify the sources of errors, find why different code versions produce different results, and identify which parameter values affect output. We propose PROVision, a provenance-driven troubleshooting tool that supports ETL and matching computations and traces extraction of content within data objects. PROVision extends database-style provenance techniques to capture equivalences, support optimizations, and enable selective evaluation. We formalize our extensions, implement them in the PROVision system, and validate their effectiveness and scalability for common ETL and matching tasks.
2020-02-10
Ben Othmane, Lotfi, Jamil, Ameerah-Muhsina, Abdelkhalek, Moataz.  2019.  Identification of the Impacts of Code Changes on the Security of Software. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 2:569–574.
Companies develop their software in versions and iterations. Ensuring the security of each additional version using code review is costly and time consuming. This paper investigates automated tracing of the impacts of code changes on the security of a given software. To this end, we use call graphs to model the software code, and security assurance cases to model the security requirements of the software. Then we relate assurance case elements to code through the entry point methods of the software, creating a map of monitored security functions. This mapping allows to evaluate the security requirements that are affected by code changes. The approach is implemented in a set of tools and evaluated using three open-source ERP/E-commerce software applications. The limited evaluation showed that the approach is effective in identifying the impacts of code changes on the security of the software. The approach promises to considerably reduce the security assessment time of the subsequent releases and iterations of software, keeping the initial security state throughout the software lifetime.
2020-01-21
Taib, Abidah Mat, Othman, Nor Arzami, Hamid, Ros Syamsul, Halim, Iman Hazwam Abd.  2019.  A Learning Kit on IPv6 Deployment and Its Security Challenges for Neophytes. 2019 21st International Conference on Advanced Communication Technology (ICACT). :419–424.
Understanding the IP address depletion and the importance of handling security issues in IPv6 deployment can make IT personnel becomes more functional and helpful to the organization. It also applied to the management people who are responsible for approving the budget or organization policy related to network security. Unfortunately, new employees or fresh graduates may not really understand the challenge related to IPv6 deployment. In order to be equipped with appropriate knowledge and skills, these people may require a few weeks of attending workshops or training. Thus, of course involving some implementation cost as well as sacrificing allocated working hours. As an alternative to save cost and to help new IT personnel become quickly educated and familiar with IPv6 deployment issues, this paper presented a learning kit that has been designed to include self-learning features that can help neophytes to learn about IPv6 at their own pace. The kit contains some compact notes, brief security model and framework as well as a guided module with supporting quizzes to maintain a better understanding of the topics. Since IPv6 is still in the early phase of implementation in most of developing countries, this kit can be an additional assisting tool to accelerate the deployment of IPv6 environment in any organization. The kit also can be used by teachers and trainers as a supporting tool in the classroom. The pre-alpha testing has attracted some potential users and the findings proved their acceptance. The kit has prospective to be further enhanced and commercialized.
2020-03-09
Calzavara, Stefano, Conti, Mauro, Focardi, Riccardo, Rabitti, Alvise, Tolomei, Gabriele.  2019.  Mitch: A Machine Learning Approach to the Black-Box Detection of CSRF Vulnerabilities. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :528–543.
Cross-Site Request Forgery (CSRF) is one of the oldest and simplest attacks on the Web, yet it is still effective on many websites and it can lead to severe consequences, such as economic losses and account takeovers. Unfortunately, tools and techniques proposed so far to identify CSRF vulnerabilities either need manual reviewing by human experts or assume the availability of the source code of the web application. In this paper we present Mitch, the first machine learning solution for the black-box detection of CSRF vulnerabilities. At the core of Mitch there is an automated detector of sensitive HTTP requests, i.e., requests which require protection against CSRF for security reasons. We trained the detector using supervised learning techniques on a dataset of 5,828 HTTP requests collected on popular websites, which we make available to other security researchers. Our solution outperforms existing detection heuristics proposed in the literature, allowing us to identify 35 new CSRF vulnerabilities on 20 major websites and 3 previously undetected CSRF vulnerabilities on production software already analyzed using a state-of-the-art tool.
2020-05-22
Shah, Mujahid, Ahmed, Sheeraz, Saeed, Khalid, Junaid, Muhammad, Khan, Hamayun, Ata-ur-rehman.  2019.  Penetration Testing Active Reconnaissance Phase – Optimized Port Scanning With Nmap Tool. 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). :1—6.
Reconnaissance might be the longest phase, sometimes take weeks or months. The black hat makes use of passive information gathering techniques. Once the attacker has sufficient statistics, then the attacker starts the technique of scanning perimeter and internal network devices seeking out open ports and related services. In this paper we are showing traffic accountability and time to complete the specific task during reconnaissance phase active scanning with nmap tool and proposed strategies that how to deal with large volumes of hosts and conserve network traffic as well as time of the specific task.
2020-02-17
Zou, Zhenwan, Hou, Yingsa, Yang, Huiting, Li, Mingxuan, Wang, Bin, Guo, Qingrui.  2019.  Research and Implementation of Intelligent Substation Information Security Risk Assessment Tool. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). :1306–1310.
In order to improve the information security level of intelligent substation, this paper proposes an intelligent substation information security assessment tool through the research and analysis of intelligent substation information security risk and information security assessment method, and proves that the tool can effectively detect it. It is of great significance to carry out research on industrial control systems, especially intelligent substation information security.
Guo, Qingrui, Xie, Peng, Li, Feng, Guo, Xuerang, Li, Yutao, Ma, Lin.  2019.  Research on Linkage Model of Network Resource Survey and Vulnerability Detection in Power Information System. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1068–1071.
this paper first analyses the new challenges of power information network management, difficulties of the power information network resource survey and vulnerability detection are proposed. Then, a linkage model of network resource survey and vulnerability detection is designed, and the framework of three modules in the model is described, meanwhile the process of network resources survey and vulnerability detection linkage is proposed. Finally, the implementation technologies are given corresponding to the main functions of each module.
2020-03-27
Coblenz, Michael, Sunshine, Joshua, Aldrich, Jonathan, Myers, Brad A..  2019.  Smarter Smart Contract Development Tools. 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB). :48–51.
Much recent work focuses on finding bugs and security vulnerabilities in smart contracts written in existing languages. Although this approach may be helpful, it does not address flaws in the underlying programming language, which can facilitate writing buggy code in the first place. We advocate a re-thinking of the blockchain software engineering tool set, starting with the programming language in which smart contracts are written. In this paper, we propose and justify requirements for a new generation of blockchain software development tools. New tools should (1) consider users' needs as a primary concern; (2) seek to facilitate safe development by detecting relevant classes of serious bugs at compile time; (3) as much as possible, be blockchain-agnostic, given the wide variety of different blockchain platforms available, and leverage the properties that are common among blockchain environments to improve safety and developer effectiveness.
2020-02-17
Tunde-Onadele, Olufogorehan, He, Jingzhu, Dai, Ting, Gu, Xiaohui.  2019.  A Study on Container Vulnerability Exploit Detection. 2019 IEEE International Conference on Cloud Engineering (IC2E). :121–127.
Containers have become increasingly popular for deploying applications in cloud computing infrastructures. However, recent studies have shown that containers are prone to various security attacks. In this paper, we conduct a study on the effectiveness of various vulnerability detection schemes for containers. Specifically, we implement and evaluate a set of static and dynamic vulnerability attack detection schemes using 28 real world vulnerability exploits that widely exist in docker images. Our results show that the static vulnerability scanning scheme only detects 3 out of 28 tested vulnerabilities and dynamic anomaly detection schemes detect 22 vulnerability exploits. Combining static and dynamic schemes can further improve the detection rate to 86% (i.e., 24 out of 28 exploits). We also observe that the dynamic anomaly detection scheme can achieve more than 20 seconds lead time (i.e., a time window before attacks succeed) for a group of commonly seen attacks in containers that try to gain a shell and execute arbitrary code.
2020-01-21
Ikany, Joris, Jazri, Husin.  2019.  A Symptomatic Framework to Predict the Risk of Insider Threats. 2019 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD). :1–5.
The constant changing of technologies have brought to critical infrastructure organisations numerous information security threats such as insider threat. Critical infrastructure organisations have difficulties to early detect and capture the possible vital signs of insider threats due sometimes to lack of effective methodologies or frameworks. It is from this viewpoint that, this paper proposes a symptomatic insider threat risk assessments framework known as Insider Threat Framework for Namibia Critical Infrastructure Organization (ITFNACIO), aimed to predict the probable signs of insider threat based on Symptomatic Analysis (SA), and develop a prototype as a proof of concept. A case study was successfully used to validate and implement the proposed framework; hence, qualitative methodology was employed throughout the whole research process where two (2) insider threats were captured. The proposed insider threat framework can be further developed in multiple cases and a more automated system able to trigger an early warning system of possible insider threat events.
2020-04-20
Huang, Zhen, Lie, David, Tan, Gang, Jaeger, Trent.  2019.  Using Safety Properties to Generate Vulnerability Patches. 2019 IEEE Symposium on Security and Privacy (SP). :539–554.
Security vulnerabilities are among the most critical software defects in existence. When identified, programmers aim to produce patches that prevent the vulnerability as quickly as possible, motivating the need for automatic program repair (APR) methods to generate patches automatically. Unfortunately, most current APR methods fall short because they approximate the properties necessary to prevent the vulnerability using examples. Approximations result in patches that either do not fix the vulnerability comprehensively, or may even introduce new bugs. Instead, we propose property-based APR, which uses human-specified, program-independent and vulnerability-specific safety properties to derive source code patches for security vulnerabilities. Unlike properties that are approximated by observing the execution of test cases, such safety properties are precise and complete. The primary challenge lies in mapping such safety properties into source code patches that can be instantiated into an existing program. To address these challenges, we propose Senx, which, given a set of safety properties and a single input that triggers the vulnerability, detects the safety property violated by the vulnerability input and generates a corresponding patch that enforces the safety property and thus, removes the vulnerability. Senx solves several challenges with property-based APR: it identifies the program expressions and variables that must be evaluated to check safety properties and identifies the program scopes where they can be evaluated, it generates new code to selectively compute the values it needs if calling existing program code would cause unwanted side effects, and it uses a novel access range analysis technique to avoid placing patches inside loops where it could incur performance overhead. Our evaluation shows that the patches generated by Senx successfully fix 32 of 42 real-world vulnerabilities from 11 applications including various tools or libraries for manipulating graphics/media files, a programming language interpreter, a relational database engine, a collection of programming tools for creating and managing binary programs, and a collection of basic file, shell, and text manipulation tools.
2020-03-09
Chhillar, Dheeraj, Sharma, Kalpana.  2019.  ACT Testbot and 4S Quality Metrics in XAAS Framework. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). :503–509.

The purpose of this paper is to analyze all Cloud based Service Models, Continuous Integration, Deployment and Delivery process and propose an Automated Continuous Testing and testing as a service based TestBot and metrics dashboard which will be integrated with all existing automation, bug logging, build management, configuration and test management tools. Recently cloud is being used by organizations to save time, money and efforts required to setup and maintain infrastructure and platform. Continuous Integration and Delivery is in practice nowadays within Agile methodology to give capability of multiple software releases on daily basis and ensuring all the development, test and Production environments could be synched up quickly. In such an agile environment there is need to ramp up testing tools and processes so that overall regression testing including functional, performance and security testing could be done along with build deployments at real time. To support this phenomenon, we researched on Continuous Testing and worked with industry professionals who are involved in architecting, developing and testing the software products. A lot of research has been done towards automating software testing so that testing of software product could be done quickly and overall testing process could be optimized. As part of this paper we have proposed ACT TestBot tool, metrics dashboard and coined 4S quality metrics term to quantify quality of the software product. ACT testbot and metrics dashboard will be integrated with Continuous Integration tools, Bug reporting tools, test management tools and Data Analytics tools to trigger automation scripts, continuously analyze application logs, open defects automatically and generate metrics reports. Defect pattern report will be created to support root cause analysis and to take preventive action.

2020-02-26
Bhatnagar, Dev, Som, Subhranil, Khatri, Sunil Kumar.  2019.  Advance Persistant Threat and Cyber Spying - The Big Picture, Its Tools, Attack Vectors and Countermeasures. 2019 Amity International Conference on Artificial Intelligence (AICAI). :828–839.

Advance persistent threat is a primary security concerns to the big organizations and its technical infrastructure, from cyber criminals seeking personal and financial information to state sponsored attacks designed to disrupt, compromising infrastructure, sidestepping security efforts thus causing serious damage to organizations. A skilled cybercriminal using multiple attack vectors and entry points navigates around the defenses, evading IDS/Firewall detection and breaching the network in no time. To understand the big picture, this paper analyses an approach to advanced persistent threat by doing the same things the bad guys do on a network setup. We will walk through various steps from foot-printing and reconnaissance, scanning networks, gaining access, maintaining access to finally clearing tracks, as in a real world attack. We will walk through different attack tools and exploits used in each phase and comparative study on their effectiveness, along with explaining their attack vectors and its countermeasures. We will conclude the paper by explaining the factors which actually qualify to be an Advance Persistent Threat.

Gountia, Debasis, Roy, Sudip.  2019.  Checkpoints Assignment on Cyber-Physical Digital Microfluidic Biochips for Early Detection of Hardware Trojans. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). :16–21.

Present security study involving analysis of manipulation of individual droplets of samples and reagents by digital microfluidic biochip has remarked that the biochip design flow is vulnerable to piracy attacks, hardware Trojans attacks, overproduction, Denial-of-Service attacks, and counterfeiting. Attackers can introduce bioprotocol manipulation attacks against biochips used for medical diagnosis, biochemical analysis, and frequent diseases detection in healthcare industry. Among these attacks, hardware Trojans have created a major threatening issue in its security concern with multiple ways to crack the sensitive data or alter original functionality by doing malicious operations in biochips. In this paper, we present a systematic algorithm for the assignment of checkpoints required for error-recovery of available bioprotocols in case of hardware Trojans attacks in performing operations by biochip. Moreover, it can guide the placement and timing of checkpoints so that the result of an attack is reduced, and hence enhance the security concerns of digital microfluidic biochips. Comparative study with traditional checkpoint schemes demonstrate the superiority of the proposed algorithm without overhead of the bioprotocol completion time with higher error detection accuracy.

2020-01-20
Sivanantham, S., Abirami, R., Gowsalya, R..  2019.  Comparing the Performance of Adaptive Boosted Classifiers in Anomaly based Intrusion Detection System for Networks. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–5.

The computer network is used by billions of people worldwide for variety of purposes. This has made the security increasingly important in networks. It is essential to use Intrusion Detection Systems (IDS) and devices whose main function is to detect anomalies in networks. Mostly all the intrusion detection approaches focuses on the issues of boosting techniques since results are inaccurate and results in lengthy detection process. The major pitfall in network based intrusion detection is the wide-ranging volume of data gathered from the network. In this paper, we put forward a hybrid anomaly based intrusion detection system which uses Classification and Boosting technique. The Paper is organized in such a way it compares the performance three different Classifiers along with boosting. Boosting process maximizes classification accuracy. Results of proposed scheme will analyzed over different datasets like Intrusion Detection Kaggle Dataset and NSL KDD. Out of vast analysis it is found Random tree provides best average Accuracy rate of around 99.98%, Detection rate of 98.79% and a minimum False Alarm rate.