Filters: Keyword is Google  [Clear All Filters]
Mueller, Tobias, Klotzsche, Daniel, Herrmann, Dominik, Federrath, Hannes.  2019.  Dangers and Prevalence of Unprotected Web Fonts. 2019 International Conference on Software, Telecommunications and Computer Networks (SoftCOM). :1—5.
Most Web sites rely on resources hosted by third parties such as CDNs. Third parties may be compromised or coerced into misbehaving, e.g. delivering a malicious script or stylesheet. Unexpected changes to resources hosted by third parties can be detected with the Subresource Integrity (SRI) mechanism. The focus of SRI is on scripts and stylesheets. Web fonts cannot be secured with that mechanism under all circumstances. The first contribution of this paper is to evaluates the potential for attacks using malicious fonts. With an instrumented browser we find that (1) more than 95% of the top 50,000 Web sites of the Tranco top list rely on resources hosted by third parties and that (2) only a small fraction employs SRI. Moreover, we find that more than 60% of the sites in our sample use fonts hosted by third parties, most of which are being served by Google. The second contribution of the paper is a proof of concept of a malicious font as well as a tool for automatically generating such a font, which targets security-conscious users who are used to verifying cryptographic fingerprints. Software vendors publish such fingerprints along with their software packages to allow users to verify their integrity. Due to incomplete SRI support for Web fonts, a third party could force a browser to load our malicious font. The font targets a particular cryptographic fingerprint and renders it as a desired different fingerprint. This allows attackers to fool users into believing that they download a genuine software package although they are actually downloading a maliciously modified version. Finally, we propose countermeasures that could be deployed to protect the integrity of Web fonts.
Srisopha, Kamonphop, Phonsom, Chukiat, Lin, Keng, Boehm, Barry.  2019.  Same App, Different Countries: A Preliminary User Reviews Study on Most Downloaded iOS Apps. 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME). :76—80.
Prior work on mobile app reviews has demonstrated that user reviews contain a wealth of information and are seen as a potential source of requirements. However, most of the studies done in this area mainly focused on mining and analyzing user reviews from the US App Store, leaving reviews of users from other countries unexplored. In this paper, we seek to understand if the perception of the same apps between users from other countries and that from the US differs through analyzing user reviews. We retrieve 300,643 user reviews of the 15 most downloaded iOS apps of 2018, published directly by Apple, from nine English-speaking countries over the course of 5 months. We manually classify 3,358 reviews into several software quality and improvement factors. We leverage a random forest based algorithm to identify factors that can be used to differentiate reviews between the US and other countries. Our preliminary results show that all countries have some factors that are proportionally inconsistent with the US.
Chowdhury, Nahida Sultana, Raje, Rajeev R..  2019.  SERS: A Security-Related and Evidence-Based Ranking Scheme for Mobile Apps. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :130–139.
In recent years, the number of smart mobile devices has rapidly increased worldwide. This explosion of continuously connected mobile devices has resulted in an exponential growth in the number of publically available mobile Apps. To facilitate the selection of mobile Apps, from various available choices, the App distribution platforms typically rank/recommend Apps based on average star ratings, the number of downloads, and associated reviews - the external aspect of an App. However, these ranking schemes typically tend to ignore critical internal aspects (e.g., security vulnerabilities) of the Apps. Such an omission of internal aspects is certainly not desirable, especially when many of the users do not possess the necessary skills to evaluate the internal aspects and choose an App based on the default ranking scheme which uses the external aspect. In this paper, we build upon our earlier efforts by focusing specifically on the security-related internal aspect of an App and its combination with the external aspect computed from the user reviews by identifying security-related comments.We use this combination to rank-order similar Apps. We evaluate our approach on publicly available Apps from the Google PlayStore and compare our ranking with prevalent ranking techniques such as the average star ratings. The experimental results indicate the effectiveness of our proposed approach.
Gordin, Ionel, Graur, Adrian, Potorac, Alin.  2019.  Two-factor authentication framework for private cloud. 2019 23rd International Conference on System Theory, Control and Computing (ICSTCC). :255–259.
Authorizing access to the public cloud has evolved over the last few years, from simple user authentication and password authentication to two-factor authentication (TOTP), with the addition of an additional field for entering a unique code. Today it is used by almost all major websites such as Facebook, Microsoft, Apple and is a frequently used solution for banking websites. On the other side, the private cloud solutions like OpenStack, CloudStack or Eucalyptus doesn't offer this security improvement. This article is presenting the advantages of this new type of authentication and synthetizes the TOTP authentication forms used by major cloud providers. Furthermore, the article is proposing to solve this challenge by presenting a practical solution for adding two-factor authentication for OpenStack cloud. For this purpose, the web authentication form has been modified and a new authentication module has been developed. The present document covers as well the entire process of adding a TOTP user, generating and sending the secret code in QR form to the user. The study concludes with OpenStack tools used for simplifying the entire process presented above.
Patil, Srushti, Dhage, Sudhir.  2019.  A Methodical Overview on Phishing Detection along with an Organized Way to Construct an Anti-Phishing Framework. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :588-593.

Phishing is a security attack to acquire personal information like passwords, credit card details or other account details of a user by means of websites or emails. Phishing websites look similar to the legitimate ones which make it difficult for a layman to differentiate between them. As per the reports of Anti Phishing Working Group (APWG) published in December 2018, phishing against banking services and payment processor was high. Almost all the phishy URLs use HTTPS and use redirects to avoid getting detected. This paper presents a focused literature survey of methods available to detect phishing websites. A comparative study of the in-use anti-phishing tools was accomplished and their limitations were acknowledged. We analyzed the URL-based features used in the past to improve their definitions as per the current scenario which is our major contribution. Also, a step wise procedure of designing an anti-phishing model is discussed to construct an efficient framework which adds to our contribution. Observations made out of this study are stated along with recommendations on existing systems.

Hamadah, Siham, Aqel, Darah.  2019.  A Proposed Virtual Private Cloud-Based Disaster Recovery Strategy. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). :469–473.

Disaster is an unexpected event in a system lifetime, which can be made by nature or even human errors. Disaster recovery of information technology is an area of information security for protecting data against unsatisfactory events. It involves a set of procedures and tools for returning an organization to a state of normality after an occurrence of a disastrous event. So the organizations need to have a good plan in place for disaster recovery. There are many strategies for traditional disaster recovery and also for cloud-based disaster recovery. This paper focuses on using cloud-based disaster recovery strategies instead of the traditional techniques, since the cloud-based disaster recovery has proved its efficiency in providing the continuity of services faster and in less cost than the traditional ones. The paper introduces a proposed model for virtual private disaster recovery on cloud by using two metrics, which comprise a recovery time objective and a recovery point objective. The proposed model has been evaluated by experts in the field of information technology and the results show that the model has ensured the security and business continuity issues, as well as the faster recovery of a disaster that could face an organization. The paper also highlights the cloud computing services and illustrates the most benefits of cloud-based disaster recovery.

Nicole Lee.  2019.  Google’s new curriculum teaches kids how to detect disinformation. Engadget.

The curriculum includes "Don't Fall for Fake" activities that are centered around teaching children critical thinking skills. This is so they'll know the difference between credible and non-credible news sources.

Saverimoutou, Antoine, Mathieu, Bertrand, Vaton, Sandrine.  2019.  Influence of Internet Protocols and CDN on Web Browsing. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–5.

The Web ecosystem has been evolving over the past years and new Internet protocols, namely HTTP/2 over TLS/TCP and QUIC/UDP, are now used to deliver Web contents. Similarly, CDNs (Content Delivery Network) are deployed worldwide, caching contents close to end-users to optimize web browsing quality. We present in this paper an analysis of the influence of the Internet protocols and CDN on the Top 10,000 Alexa websites, based on a 12-month measurement campaign (from April 2018 to April 2019) performed via our tool Web View [1]. Part of our measurements are made public, represented on a monitoring website1, showing the results for the Top 50 Alexa Websites plus few specific websites and 8 french websites, suggested by the French Agency in charge of regulating telecommunications. Our analysis of this long-term measurement campaign allows to better analyze the delivery of public websites. For instance, it shows that even if some argue that QUIC optimizes the quality, it is not observed in the real-life since QUIC is not largely deployed. Our method for analyzing CDN delivery in the Web browsing allows us to evaluate its influence, which is important since their usage can decrease the web pages' loading time, on average 43.1% with HTTP/2 and 38.5% with QUIC, when requesting a second time the same home page.

Zong, Zhaorong, Hong, Changchun.  2018.  On Application of Natural Language Processing in Machine Translation. 2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE). :506–510.
Natural language processing is the core of machine translation. In the history, its development process is almost the same as machine translation, and the two complement each other. This article compares the natural language processing of statistical corpora with neural machine translation and concludes the natural language processing: Neural machine translation has the advantage of deep learning, which is very suitable for dealing with the high dimension, label-free and big data of natural language, therefore, its application is more general and reflects the power of big data and big data thinking.
Wang, G., Wang, B., Wang, T., Nika, A., Zheng, H., Zhao, B. Y..  2018.  Ghost Riders: Sybil Attacks on Crowdsourced Mobile Mapping Services. IEEE/ACM Transactions on Networking. 26:1123–1136.
Real-time crowdsourced maps, such as Waze provide timely updates on traffic, congestion, accidents, and points of interest. In this paper, we demonstrate how lack of strong location authentication allows creation of software-based Sybil devices that expose crowdsourced map systems to a variety of security and privacy attacks. Our experiments show that a single Sybil device with limited resources can cause havoc on Waze, reporting false congestion and accidents and automatically rerouting user traffic. More importantly, we describe techniques to generate Sybil devices at scale, creating armies of virtual vehicles capable of remotely tracking precise movements for large user populations while avoiding detection. To defend against Sybil devices, we propose a new approach based on co-location edges, authenticated records that attest to the one-time physical co-location of a pair of devices. Over time, co-location edges combine to form large proximity graphs that attest to physical interactions between devices, allowing scalable detection of virtual vehicles. We demonstrate the efficacy of this approach using large-scale simulations, and how they can be used to dramatically reduce the impact of the attacks. We have informed Waze/Google team of our research findings. Currently, we are in active collaboration with Waze team to improve the security and privacy of their system.
Hu, Boyang, Yan, Qiben, Zheng, Yao.  2018.  Tracking location privacy leakage of mobile ad networks at scale. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–2.
The online advertising ecosystem is built upon the massive data collection of ad networks to learn the properties of users for targeted ad deliveries. Existing efforts have investigated the privacy leakage behaviors of mobile ad networks. However, there lacks a large-scale measurement study to evaluate the scale of privacy leakage through mobile ads. In this work, we present a study of the potential privacy leakage in location-based mobile advertising services based on a large-scale measurement. We first introduce a threat model in the mobile ad ecosystem, and then design a measurement system to perform extensive threat measurements and assessments. To counteract the privacy leakage threats, we design and implement an adaptive location obfuscation mechanism, which can be used to obfuscate location data in real-time while minimizing the impact to mobile ad businesses.
Hu, Boyang, Yan, Qiben, Zheng, Yao.  2018.  Tracking location privacy leakage of mobile ad networks at scale. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–2.
The online advertising ecosystem is built upon the massive data collection of ad networks to learn the properties of users for targeted ad deliveries. Existing efforts have investigated the privacy leakage behaviors of mobile ad networks. However, there lacks a large-scale measurement study to evaluate the scale of privacy leakage through mobile ads. In this work, we present a study of the potential privacy leakage in location-based mobile advertising services based on a large-scale measurement. We first introduce a threat model in the mobile ad ecosystem, and then design a measurement system to perform extensive threat measurements and assessments. To counteract the privacy leakage threats, we design and implement an adaptive location obfuscation mechanism, which can be used to obfuscate location data in real-time while minimizing the impact to mobile ad businesses.
Madala, D S V, Jhanwar, Mahabir Prasad, Chattopadhyay, Anupam.  2018.  Certificate Transparency Using Blockchain. 2018 IEEE International Conference on Data Mining Workshops (ICDMW). :71-80.

The security of web communication via the SSL/TLS protocols relies on safe distributions of public keys associated with web domains in the form of X.509 certificates. Certificate authorities (CAs) are trusted third parties that issue these certificates. However, the CA ecosystem is fragile and prone to compromises. Starting with Google's Certificate Transparency project, a number of research works have recently looked at adding transparency for better CA accountability, effectively through public logs of all certificates issued by certification authorities, to augment the current X.509 certificate validation process into SSL/TLS. In this paper, leveraging recent progress in blockchain technology, we propose a novel system, called CTB, that makes it impossible for a CA to issue a certificate for a domain without obtaining consent from the domain owner. We further make progress to equip CTB with certificate revocation mechanism. We implement CTB using IBM's Hyperledger Fabric blockchain platform. CTB's smart contract, written in Go, is provided for complete reference.

Shrestha, P., Shrestha, B., Saxena, N..  2018.  Home Alone: The Insider Threat of Unattended Wearables and A Defense using Audio Proximity. 2018 IEEE Conference on Communications and Network Security (CNS). :1–9.

In this paper, we highlight and study the threat arising from the unattended wearable devices pre-paired with a smartphone over a wireless communication medium. Most users may not lock their wearables due to their small form factor, and may strip themselves off of these devices often, leaving or forgetting them unattended while away from homes (or shared office spaces). An “insider” attacker (potentially a disgruntled friend, roommate, colleague, or even a spouse) can therefore get hold of the wearable, take it near the user's phone (i.e., within radio communication range) at another location (e.g., user's office), and surreptitiously use it across physical barriers for various nefarious purposes, including pulling and learning sensitive information from the phone (such as messages, photos or emails), and pushing sensitive commands to the phone (such as making phone calls, sending text messages and taking pictures). The attacker can then safely restore the wearable, wait for it to be left unattended again and may repeat the process for maximum impact, while the victim remains completely oblivious to the ongoing attack activity. This malicious behavior is in sharp contrast to the threat of stolen wearables where the victim would unpair the wearable as soon as the theft is detected. Considering the severity of this threat, we also respond by building a defense based on audio proximity, which limits the wearable to interface with the phone only when it can pick up on an active audio challenge produced by the phone.

Jain, D., Khemani, S., Prasad, G..  2018.  Identification of Distributed Malware. 2018 IEEE 3rd International Conference on Communication and Information Systems (ICCIS). :242-246.

Smartphones have evolved over the years from simple devices to communicate with each other to fully functional portable computers although with comparatively less computational power but inholding multiple applications within. With the smartphone revolution, the value of personal data has increased. As technological complexities increase, so do the vulnerabilities in the system. Smartphones are the latest target for attacks. Android being an open source platform and also the most widely used smartphone OS draws the attention of many malware writers to exploit the vulnerabilities of it. Attackers try to take advantage of these vulnerabilities and fool the user and misuse their data. Malwares have come a long way from simple worms to sophisticated DDOS using Botnets, the latest trends in computer malware tend to go in the distributed direction, to evade the multiple anti-virus apps developed to counter generic viruses and Trojans. However, the recent trend in android system is to have a combination of applications which acts as malware. The applications are benign individually but when grouped, these may result into a malicious activity. This paper proposes a new category of distributed malware in android system, how it can be used to evade the current security, and how it can be detected with the help of graph matching algorithm.

Jenkins, J., Cai, H..  2018.  Leveraging Historical Versions of Android Apps for Efficient and Precise Taint Analysis. 2018 IEEE/ACM 15th International Conference on Mining Software Repositories (MSR). :265-269.

Today, computing on various Android devices is pervasive. However, growing security vulnerabilities and attacks in the Android ecosystem constitute various threats through user apps. Taint analysis is a common technique for defending against these threats, yet it suffers from challenges in attaining practical simultaneous scalability and effectiveness. This paper presents a novel approach to fast and precise taint checking, called incremental taint analysis, by exploiting the evolving nature of Android apps. The analysis narrows down the search space of taint checking from an entire app, as conventionally addressed, to the parts of the program that are different from its previous versions. This technique improves the overall efficiency of checking multiple versions of the app as it evolves. We have implemented the techniques as a tool prototype, EVOTAINT, and evaluated our analysis by applying it to real-world evolving Android apps. Our preliminary results show that the incremental approach largely reduced the cost of taint analysis, by 78.6% on average, yet without sacrificing the analysis effectiveness, relative to a representative precise taint analysis as the baseline.

Khadilkar, Kunal, Kulkarni, Siddhivinayak, Bone, Poojarani.  2018.  Plagiarism Detection Using Semantic Knowledge Graphs. 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA). :1—6.

Every day, huge amounts of unstructured text is getting generated. Most of this data is in the form of essays, research papers, patents, scholastic articles, book chapters etc. Many plagiarism softwares are being developed to be used in order to reduce the stealing and plagiarizing of Intellectual Property (IP). Current plagiarism softwares are mainly using string matching algorithms to detect copying of text from another source. The drawback of some of such plagiarism softwares is their inability to detect plagiarism when the structure of the sentence is changed. Replacement of keywords by their synonyms also fails to be detected by these softwares. This paper proposes a new method to detect such plagiarism using semantic knowledge graphs. The method uses Named Entity Recognition as well as semantic similarity between sentences to detect possible cases of plagiarism. The doubtful cases are visualized using semantic Knowledge Graphs for thorough analysis of authenticity. Rules for active and passive voice have also been considered in the proposed methodology.

Eskandari, S., Leoutsarakos, A., Mursch, T., Clark, J..  2018.  A First Look at Browser-Based Cryptojacking. 2018 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :58–66.

In this paper, we examine the recent trend to- wards in-browser mining of cryptocurrencies; in particular, the mining of Monero through Coinhive and similar code- bases. In this model, a user visiting a website will download a JavaScript code that executes client-side in her browser, mines a cryptocurrency - typically without her consent or knowledge - and pays out the seigniorage to the website. Websites may consciously employ this as an alternative or to supplement advertisement revenue, may offer premium content in exchange for mining, or may be unwittingly serving the code as a result of a breach (in which case the seigniorage is collected by the attacker). The cryptocurrency Monero is preferred seemingly for its unfriendliness to large-scale ASIC mining that would drive browser-based efforts out of the market, as well as for its purported privacy features. In this paper, we survey this landscape, conduct some measurements to establish its prevalence and profitability, outline an ethical framework for considering whether it should be classified as an attack or business opportunity, and make suggestions for the detection, mitigation and/or prevention of browser-based mining for non- consenting users.

Habib, S. M., Alexopoulos, N., Islam, M. M., Heider, J., Marsh, S., Müehlhäeuser, M..  2018.  Trust4App: Automating Trustworthiness Assessment of Mobile Applications. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :124–135.

Smartphones have become ubiquitous in our everyday lives, providing diverse functionalities via millions of applications (apps) that are readily available. To achieve these functionalities, apps need to access and utilize potentially sensitive data, stored in the user's device. This can pose a serious threat to users' security and privacy, when considering malicious or underskilled developers. While application marketplaces, like Google Play store and Apple App store, provide factors like ratings, user reviews, and number of downloads to distinguish benign from risky apps, studies have shown that these metrics are not adequately effective. The security and privacy health of an application should also be considered to generate a more reliable and transparent trustworthiness score. In order to automate the trustworthiness assessment of mobile applications, we introduce the Trust4App framework, which not only considers the publicly available factors mentioned above, but also takes into account the Security and Privacy (S&P) health of an application. Additionally, it considers the S&P posture of a user, and provides an holistic personalized trustworthiness score. While existing automatic trustworthiness frameworks only consider trustworthiness indicators (e.g. permission usage, privacy leaks) individually, Trust4App is, to the best of our knowledge, the first framework to combine these indicators. We also implement a proof-of-concept realization of our framework and demonstrate that Trust4App provides a more comprehensive, intuitive and actionable trustworthiness assessment compared to existing approaches.

Jacomme, Charlie, Kremer, Steve.  2018.  An Extensive Formal Analysis of Multi-factor Authentication Protocols. 2018 IEEE 31st Computer Security Foundations Symposium (CSF). :1–15.
Passwords are still the most widespread means for authenticating users, even though they have been shown to create huge security problems. This motivated the use of additional authentication mechanisms used in so-called multi-factor authentication protocols. In this paper we define a detailed threat model for this kind of protocols: while in classical protocol analysis attackers control the communication network, we take into account that many communications are performed over TLS channels, that computers may be infected by different kinds of malwares, that attackers could perform phishing, and that humans may omit some actions. We formalize this model in the applied pi calculus and perform an extensive analysis and comparison of several widely used protocols - variants of Google 2-step and FIDO's U2F. The analysis is completely automated, generating systematically all combinations of threat scenarios for each of the protocols and using the P ROVERIF tool for automated protocol analysis. Our analysis highlights weaknesses and strengths of the different protocols, and allows us to suggest several small modifications of the existing protocols which are easy to implement, yet improve their security in several threat scenarios.
Dudheria, R..  2017.  Evaluating Features and Effectiveness of Secure QR Code Scanners. 2017 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :40–49.

As QR codes become ubiquitous, there is a prominent security threat of phishing and malware attacks that can be carried out by sharing rogue URLs through such codes. Several QR code scanner apps have become available in the past few years to combat such threats. Nevertheless, limited work exists in the literature evaluating such apps in the context of security. In this paper, we have investigated the status of existing secure QR code scanner apps for Android from a security point of view. We found that several of the so-called secure QR code scanner apps merely present the URL encoded in a QR code to the user rather than validating it against suitable threat databases. Further, many apps do not support basic security features such as displaying the URL to the user and asking for user confirmation before proceeding to open the URL in a browser. The most alarming issue that emerged during this study is that only two of the studied apps perform validation of the redirected URL associated with a QR code. We also tested the relevant apps with a set of benign, phishing and malware URLs collected from multiple sources. Overall, the results of our experiments imply that the protection offered by the examined secure QR code scanner apps against rogue URLs (especially malware URLs) is limited. Based on the findings of our investigation, we have distilled a set of key lessons and proposed design recommendations to enhance the security aspects of such apps.

Tramèr, F., Atlidakis, V., Geambasu, R., Hsu, D., Hubaux, J. P., Humbert, M., Juels, A., Lin, H..  2017.  FairTest: Discovering Unwarranted Associations in Data-Driven Applications. 2017 IEEE European Symposium on Security and Privacy (EuroS P). :401–416.

In a world where traditional notions of privacy are increasingly challenged by the myriad companies that collect and analyze our data, it is important that decision-making entities are held accountable for unfair treatments arising from irresponsible data usage. Unfortunately, a lack of appropriate methodologies and tools means that even identifying unfair or discriminatory effects can be a challenge in practice. We introduce the unwarranted associations (UA) framework, a principled methodology for the discovery of unfair, discriminatory, or offensive user treatment in data-driven applications. The UA framework unifies and rationalizes a number of prior attempts at formalizing algorithmic fairness. It uniquely combines multiple investigative primitives and fairness metrics with broad applicability, granular exploration of unfair treatment in user subgroups, and incorporation of natural notions of utility that may account for observed disparities. We instantiate the UA framework in FairTest, the first comprehensive tool that helps developers check data-driven applications for unfair user treatment. It enables scalable and statistically rigorous investigation of associations between application outcomes (such as prices or premiums) and sensitive user attributes (such as race or gender). Furthermore, FairTest provides debugging capabilities that let programmers rule out potential confounders for observed unfair effects. We report on use of FairTest to investigate and in some cases address disparate impact, offensive labeling, and uneven rates of algorithmic error in four data-driven applications. As examples, our results reveal subtle biases against older populations in the distribution of error in a predictive health application and offensive racial labeling in an image tagger.

Lehner, F., Mazurczyk, W., Keller, J., Wendzel, S..  2017.  Inter-Protocol Steganography for Real-Time Services and Its Detection Using Traffic Coloring Approach. 2017 IEEE 42nd Conference on Local Computer Networks (LCN). :78–85.

Due to improvements in defensive systems, network threats are becoming increasingly sophisticated and complex as cybercriminals are using various methods to cloak their actions. This, among others, includes the application of network steganography e.g. to hide the communication between an infected host and a malicious control server by embedding commands into innocent-looking traffic. Currently, a new subtype of such methods called inter-protocol steganography emerged. It utilizes relationships between two or more overt protocols to hide data. In this paper, we present new inter-protocol hiding techniques which are suitable for real-time services. Afterwards, we introduce and present preliminary results of a novel steganography detection approach which relies on network traffic coloring.

Tien, C. W., Huang, T. Y., Huang, T. C., Chung, W. H., Kuo, S. Y..  2017.  MAS: Mobile-Apps Assessment and Analysis System. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :145–148.

Mobile apps are widely adopted in daily life, and contain increasing security flaws. Many regulatory agencies and organizations have announced security guidelines for app development. However, most security guidelines involving technicality and compliance with this requirement is not easily feasible. Thus, we propose Mobile Apps Assessment and Analysis System (MAS), an automatic security validation system to improve guideline compliance. MAS combines static and dynamic analysis techniques, which can be used to verify whether android apps meet the security guideline requirements. We implemented MAS in practice and verified 143 real-world apps produced by the Taiwan government. Besides, we also validated 15,000 popular apps collected from Google Play Store produced in three countries. We found that most apps contain at least three security issues. Finally, we summarize the results and list the most common security flaws for consideration in further app development.

Talreja, R., Motwani, D..  2017.  SecTrans: Enhacing user privacy on Android Platform. 2017 International Conference on Nascent Technologies in Engineering (ICNTE). :1–4.

Interchange of information through cell phones, Tabs and PDAs (Personal Digital Assistant) is the new trend in the era of digitization. In day-to-day activities, sensitive information through mobile phones is exchanged among the users. This sensitive information can be in the form of text messages, images, location, etc. The research on Android mobile applications was done at the MIT, and found that applications are leaking enormous amount of information to the third party servers. 73 percent of 55 Android applications were detected to leak personal information of the users [8]. Transmission of files securely on Android is a big issue. Therefore it is important to shield the privacy of user data on Android operating system. The main motive of this paper is to protect the privacy of data on Android Platform by allowing transmission of textual data, location, pictures in encrypted format. By doing so, we achieved intimacy and integrity of data.