Biblio

Filters: Keyword is mobility support  [Clear All Filters]
2021-04-08
Nasir, N. A., Jeong, S.-H..  2020.  Testbed-based Performance Evaluation of the Information-Centric Network. 2020 International Conference on Information and Communication Technology Convergence (ICTC). :166–169.
Proliferation of the Internet usage is rapidly increasing, and it is necessary to support the performance requirements for multimedia applications, including lower latency, improved security, faster content retrieval, and adjustability to the traffic load. Nevertheless, because the current Internet architecture is a host-oriented one, it often fails to support the necessary demands such as fast content delivery. A promising networking paradigm called Information-Centric Networking (ICN) focuses on the name of the content itself rather than the location of that content. A distinguished alternative to this ICN concept is Content-Centric Networking (CCN) that exploits more of the performance requirements by using in-network caching and outperforms the current Internet in terms of content transfer time, traffic load control, mobility support, and efficient network management. In this paper, instead of using the saturated method of validating a theory by simulation, we present a testbed-based performance evaluation of the ICN network. We used several new functions of the proposed testbed to improve the performance of the basic CCN. In this paper, we also show that the proposed testbed architecture performs better in terms of content delivery time compared to the basic CCN architecture through graphical results.
2020-09-08
Yang, Bowen, Chen, Xiang, Xie, Jinsen, Li, Sugang, Zhang, Yanyong, Yang, Jian.  2019.  Multicast Design for the MobilityFirst Future Internet Architecture. 2019 International Conference on Computing, Networking and Communications (ICNC). :88–93.
With the advent of fifth generation (5G) network and increasingly powerful mobile devices, people can conveniently obtain network resources wherever they are and whenever they want. However, the problem of mobility support in current network has not been adequately solved yet, especially in inter-domain mobile scenario, which leads to poor experience for mobile consumers. MobilityFirst is a clean slate future Internet architecture which adopts a clean separation between identity and network location. It provides new mechanisms to address the challenge of wireless access and mobility at scale. However, MobilityFirst lacks effective ways to deal with multicast service over mobile networks. In this paper, we design an efficient multicast mechanism based on MobilityFirst architecture and present the deployment in current network at scale. Furthermore, we propose a hierarchical multicast packet header with additional destinations to achieve low-cost dynamic multicast routing and provide solutions for both the multicast source and the multicast group members moving in intra- or inter-domain. Finally, we deploy a multicast prototype system to evaluate the performance of the proposed multicast mechanism.
2018-03-19
Medjek, F., Tandjaoui, D., Romdhani, I., Djedjig, N..  2017.  A Trust-Based Intrusion Detection System for Mobile RPL Based Networks. 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :735–742.

Successful deployment of Low power and Lossy Networks (LLNs) requires self-organising, self-configuring, security, and mobility support. However, these characteristics can be exploited to perform security attacks against the Routing Protocol for Low-Power and Lossy Networks (RPL). In this paper, we address the lack of strong identity and security mechanisms in RPL. We first demonstrate by simulation the impact of Sybil-Mobile attack, namely SybM, on RPL with respect to control overhead, packet delivery and energy consumption. Then, we introduce a new Intrusion Detection System (IDS) scheme for RPL, named Trust-based IDS (T-IDS). T-IDS is a distributed, cooperative and hierarchical trust-based IDS, which can detect novel intrusions by comparing network behavior deviations. In T-IDS, each node is considered as monitoring node and collaborates with his peers to detect intrusions and report them to a 6LoWPAN Border Router (6BR). In our solution, we introduced a new timer and minor extensions to RPL messages format to deal with mobility, identity and multicast issues. In addition, each node is equipped with a Trusted Platform Module co-processor to handle identification and off-load security related computation and storage.