Biblio

Filters: Keyword is Clustering algorithms  [Clear All Filters]
2020-02-10
Gao, Hongcan, Zhu, Jingwen, Liu, Lei, Xu, Jing, Wu, Yanfeng, Liu, Ao.  2019.  Detecting SQL Injection Attacks Using Grammar Pattern Recognition and Access Behavior Mining. 2019 IEEE International Conference on Energy Internet (ICEI). :493–498.
SQL injection attacks are a kind of the greatest security risks on Web applications. Much research has been done to detect SQL injection attacks by rule matching and syntax tree. However, due to the complexity and variety of SQL injection vulnerabilities, these approaches fail to detect unknown and variable SQL injection attacks. In this paper, we propose a model, ATTAR, to detect SQL injection attacks using grammar pattern recognition and access behavior mining. The most important idea of our model is to extract and analyze features of SQL injection attacks in Web access logs. To achieve this goal, we first extract and customize Web access log fields from Web applications. Then we design a grammar pattern recognizer and an access behavior miner to obtain the grammatical and behavioral features of SQL injection attacks, respectively. Finally, based on two feature sets, machine learning algorithms, e.g., Naive Bayesian, SVM, ID3, Random Forest, and K-means, are used to train and detect our model. We evaluated our model on these two feature sets, and the results show that the proposed model can effectively detect SQL injection attacks with lower false negative rate and false positive rate. In addition, comparing the accuracy of our model based on different algorithms, ID3 and Random Forest have a better ability to detect various kinds of SQL injection attacks.
2020-01-27
Fuchs, Caro, Spolaor, Simone, Nobile, Marco S., Kaymak, Uzay.  2019.  A Swarm Intelligence Approach to Avoid Local Optima in Fuzzy C-Means Clustering. 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–6.
Clustering analysis is an important computational task that has applications in many domains. One of the most popular algorithms to solve the clustering problem is fuzzy c-means, which exploits notions from fuzzy logic to provide a smooth partitioning of the data into classes, allowing the possibility of multiple membership for each data sample. The fuzzy c-means algorithm is based on the optimization of a partitioning function, which minimizes inter-cluster similarity. This optimization problem is known to be NP-hard and it is generally tackled using a hill climbing method, a local optimizer that provides acceptable but sub-optimal solutions, since it is sensitive to initialization and tends to get stuck in local optima. In this work we propose an alternative approach based on the swarm intelligence global optimization method Fuzzy Self-Tuning Particle Swarm Optimization (FST-PSO). We solve the fuzzy clustering task by optimizing fuzzy c-means' partitioning function using FST-PSO. We show that this population-based metaheuristics is more effective than hill climbing, providing high quality solutions with the cost of an additional computational complexity. It is noteworthy that, since this particle swarm optimization algorithm is self-tuning, the user does not have to specify additional hyperparameters for the optimization process.
2019-12-16
Wu, Jimmy Ming-Tai, Chun-Wei Lin, Jerry, Djenouri, Youcef, Fournier-Viger, Philippe, Zhang, Yuyu.  2019.  A Swarm-based Data Sanitization Algorithm in Privacy-Preserving Data Mining. 2019 IEEE Congress on Evolutionary Computation (CEC). :1461–1467.
In recent decades, data protection (PPDM), which not only hides information, but also provides information that is useful to make decisions, has become a critical concern. We present a sanitization algorithm with the consideration of four side effects based on multi-objective PSO and hierarchical clustering methods to find optimized solutions for PPDM. Experiments showed that compared to existing approaches, the designed sanitization algorithm based on the hierarchical clustering method achieves satisfactory performance in terms of hiding failure, missing cost, and artificial cost.
2020-01-21
Aljamal, Ibraheem, Tekeo\u glu, Ali, Bekiroglu, Korkut, Sengupta, Saumendra.  2019.  Hybrid Intrusion Detection System Using Machine Learning Techniques in Cloud Computing Environments. 2019 IEEE 17th International Conference on Software Engineering Research, Management and Applications (SERA). :84–89.

Intrusion detection is one essential tool towards building secure and trustworthy Cloud computing environment, given the ubiquitous presence of cyber attacks that proliferate rapidly and morph dynamically. In our current working paradigm of resource, platform and service consolidations, Cloud Computing provides a significant improvement in the cost metrics via dynamic provisioning of IT services. Since almost all cloud computing networks lean on providing their services through Internet, they are prone to experience variety of security issues. Therefore, in cloud environments, it is necessary to deploy an Intrusion Detection System (IDS) to detect new and unknown attacks in addition to signature based known attacks, with high accuracy. In our deliberation we assume that a system or a network ``anomalous'' event is synonymous to an ``intrusion'' event when there is a significant departure in one or more underlying system or network activities. There are couple of recently proposed ideas that aim to develop a hybrid detection mechanism, combining advantages of signature-based detection schemes with the ability to detect unknown attacks based on anomalies. In this work, we propose a network based anomaly detection system at the Cloud Hypervisor level that utilizes a hybrid algorithm: a combination of K-means clustering algorithm and SVM classification algorithm, to improve the accuracy of the anomaly detection system. Dataset from UNSW-NB15 study is used to evaluate the proposed approach and results are compared with previous studies. The accuracy for our proposed K-means clustering model is slightly higher than others. However, the accuracy we obtained from the SVM model is still low for supervised techniques.

2019-06-10
Hussain, K., Hussain, S. J., Jhanjhi, N., Humayun, M..  2019.  SYN Flood Attack Detection based on Bayes Estimator (SFADBE) For MANET. 2019 International Conference on Computer and Information Sciences (ICCIS). :1–4.

SYN flood attack is a very serious cause for disturbing the normal traffic in MANET. SYN flood attack takes advantage of the congestion caused by populating a specific route with unwanted traffic that results in the denial of services. In this paper, we proposed an Adaptive Detection Mechanism using Artificial Intelligence technique named as SYN Flood Attack Detection Based on Bayes Estimator (SFADBE) for Mobile ad hoc Network (MANET). In SFADBE, every node will gather the current information of the available channel and the secure and congested free (Best Path) channel for the traffic is selected. Due to constant congestion, the availability of the data path can be the cause of SYN Flood attack. By using this AI technique, we experienced the SYN Flood detection probability more than the others did. Simulation results show that our proposed SFADBE algorithm is low cost and robust as compared to the other existing approaches.

2020-01-06
Fan, Zexuan, Xu, Xiaolong.  2019.  APDPk-Means: A New Differential Privacy Clustering Algorithm Based on Arithmetic Progression Privacy Budget Allocation. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1737–1742.
How to protect users' private data during network data mining has become a hot issue in the fields of big data and network information security. Most current researches on differential privacy k-means clustering algorithms focus on optimizing the selection of initial centroids. However, the traditional privacy budget allocation has the problem that the random noise becomes too large as the number of iterations increases, which will reduce the performance of data clustering. To solve the problem, we improved the way of privacy budget allocation in differentially private clustering algorithm DPk-means, and proposed APDPk-means, a new differential privacy clustering algorithm based on arithmetic progression privacy budget allocation. APDPk-means decomposes the total privacy budget into a decreasing arithmetic progression, allocating the privacy budgets from large to small in the iterative process, so as to ensure the rapid convergence in early iteration. The experiment results show that compared with the other differentially private k-means algorithms, APDPk-means has better performance in availability and quality of the clustering result under the same level of privacy protection.
Mo, Ran, Liu, Jianfeng, Yu, Wentao, Jiang, Fu, Gu, Xin, Zhao, Xiaoshuai, Liu, Weirong, Peng, Jun.  2019.  A Differential Privacy-Based Protecting Data Preprocessing Method for Big Data Mining. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :693–699.
Analyzing clustering results may lead to the privacy disclosure issue in big data mining. In this paper, we put forward a differential privacy-based protecting data preprocessing method for distance-based clustering. Firstly, the data distortion technique differential privacy is used to prevent the distances in distance-based clustering from disclosing the relationships. Differential privacy may affect the clustering results while protecting privacy. Then an adaptive privacy budget parameter adjustment mechanism is applied for keeping the balance between the privacy protection and the clustering results. By solving the maximum and minimum problems, the differential privacy budget parameter can be obtained for different clustering algorithms. Finally, we conduct extensive experiments to evaluate the performance of our proposed method. The results demonstrate that our method can provide privacy protection with precise clustering results.
2020-01-27
Tuba, Eva, Jovanovic, Raka, Zivkovic, Dejan, Beko, Marko, Tuba, Milan.  2019.  Clustering Algorithm Optimized by Brain Storm Optimization for Digital Image Segmentation. 2019 7th International Symposium on Digital Forensics and Security (ISDFS). :1–6.
In the last several decades digital images were extend their usage in numerous areas. Due to various digital image processing methods they became part areas such as astronomy, agriculture and more. One of the main task in image processing application is segmentation. Since segmentation represents rather important problem, various methods were proposed in the past. One of the methods is to use clustering algorithms which is explored in this paper. We propose k-means algorithm for digital image segmentation. K-means algorithm's well known drawback is the high possibility of getting trapped into local optima. In this paper we proposed brain storm optimization algorithm for optimizing k-means algorithm used for digital image segmentation. Our proposed algorithm is tested on several benchmark images and the results are compared with other stat-of-the-art algorithms. The proposed method outperformed the existing methods.
2020-02-17
Jyothi, R., Cholli, Nagaraj G..  2019.  New Approach to Secure Cluster Heads in Wireless Sensor Networks. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :1097–1101.
This Wireless Sensor Network is a network of devices that communicates the information gathered from a monitored field through wireless links. Small size sensor nodes constitute wireless sensor networks. A Sensor is a device that responds and detects some type of input from both the physical or environmental conditions, such as pressure, heat, light, etc. Applications of wireless sensor networks include home automation, street lighting, military, healthcare and industrial process monitoring. As wireless sensor networks are distributed across large geographical area, these are vulnerable to various security threats. This affects the performance of the wireless sensor networks. The impact of security issues will become more critical if the network is used for mission-critical applications like tactical battlefield. In real life deployment scenarios, the probability of failure of nodes is more. As a result of resource constraints in the sensor nodes, traditional methods which involve large overhead computation and communication are not feasible in WSNs. Hence, design and deployment of secured WSNs is a challenging task. Attacks on WSNs include attack on confidentiality, integrity and availability. There are various types of architectures that are used to deploy WSNs. Some of them are data centric, hierarchical, location based, mobility based etc. This work discusses the security issue of hierarchical architecture and proposes a solution. In hierarchical architectures, sensor nodes are grouped to form clusters. Intra-cluster communication happens through cluster heads. Cluster heads also facilitate inter-cluster communication with other cluster heads. Aggregation of data generated by sensor nodes is done by cluster heads. Aggregated data also get transferred to base through multi-hop approach in most cases. Cluster heads are vulnerable to various malicious attacks and this greatly affects the performance of the wireless sensor network. The proposed solution identifies attacked cluster head and changes the CH by identifying the fittest node using genetic algorithm based search.
2019-11-04
Tufail, Hina, Zafar, Kashif, Baig, Rauf.  2018.  Digital Watermarking for Relational Database Security Using mRMR Based Binary Bat Algorithm. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1948–1954.
Publically available relational data without security protection may cause data protection issues. Watermarking facilitates solution for remote sharing of relational database by ensuring data integrity and security. In this research, a reversible watermarking for numerical relational database by using evolutionary technique has been proposed that ensure the integrity of underlying data and robustness of watermark. Moreover, mRMR based feature subset selection technique has been used to select attributes for implementation of watermark instead of watermarking whole database. Binary Bat algorithm has been used as constraints optimization technique for watermark creation. Experimental results have shown the effectiveness of the proposed technique against data tempering attacks. In case of alteration attacks, almost 70% data has been recovered, 50% in deletion attacks and 100% data is retrieved after insertion attacks. The watermarking based on evolutionary technique (WET) i.e., mRMR based Binary Bat Algorithm ensures the data accuracy and it is resilient against malicious attacks.
2019-03-06
Leung, C. K., Hoi, C. S. H., Pazdor, A. G. M., Wodi, B. H., Cuzzocrea, A..  2018.  Privacy-Preserving Frequent Pattern Mining from Big Uncertain Data. 2018 IEEE International Conference on Big Data (Big Data). :5101-5110.
As we are living in the era of big data, high volumes of wide varieties of data which may be of different veracity (e.g., precise data, imprecise and uncertain data) are easily generated or collected at a high velocity in many real-life applications. Embedded in these big data is valuable knowledge and useful information, which can be discovered by big data science solutions. As a popular data science task, frequent pattern mining aims to discover implicit, previously unknown and potentially useful information and valuable knowledge in terms of sets of frequently co-occurring merchandise items and/or events. Many of the existing frequent pattern mining algorithms use a transaction-centric mining approach to find frequent patterns from precise data. However, there are situations in which an item-centric mining approach is more appropriate, and there are also situations in which data are imprecise and uncertain. Hence, in this paper, we present an item-centric algorithm for mining frequent patterns from big uncertain data. In recent years, big data have been gaining the attention from the research community as driven by relevant technological innovations (e.g., clouds) and novel paradigms (e.g., social networks). As big data are typically published online to support knowledge management and fruition processes, these big data are usually handled by multiple owners with possible secure multi-part computation issues. Thus, privacy and security of big data has become a fundamental problem in this research context. In this paper, we present, not only an item-centric algorithm for mining frequent patterns from big uncertain data, but also a privacy-preserving algorithm. In other words, we present- in this paper-a privacy-preserving item-centric algorithm for mining frequent patterns from big uncertain data. Results of our analytical and empirical evaluation show the effectiveness of our algorithm in mining frequent patterns from big uncertain data in a privacy-preserving manner.
2019-12-18
Dincalp, Uygar, Güzel, Mehmet Serdar, Sevine, Omer, Bostanci, Erkan, Askerzade, Iman.  2018.  Anomaly Based Distributed Denial of Service Attack Detection and Prevention with Machine Learning. 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). :1-4.

Everyday., the DoS/DDoS attacks are increasing all over the world and the ways attackers are using changing continuously. This increase and variety on the attacks are affecting the governments, institutions, organizations and corporations in a bad way. Every successful attack is causing them to lose money and lose reputation in return. This paper presents an introduction to a method which can show what the attack and where the attack based on. This is tried to be achieved with using clustering algorithm DBSCAN on network traffic because of the change and variety in attack vectors.

2019-04-05
Nan, Z., Zhai, L., Zhai, L., Liu, H..  2018.  Botnet Homology Method Based on Symbolic Approximation Algorithm of Communication Characteristic Curve. 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). :1-6.

The IRC botnet is the earliest and most significant botnet group that has a significant impact. Its characteristic is to control multiple zombies hosts through the IRC protocol and constructing command control channels. Relevant research analyzes the large amount of network traffic generated by command interaction between the botnet client and the C&C server. Packet capture traffic monitoring on the network is currently a more effective detection method, but this information does not reflect the essential characteristics of the IRC botnet. The increase in the amount of erroneous judgments has often occurred. To identify whether the botnet control server is a homogenous botnet, dynamic network communication characteristic curves are extracted. For unequal time series, dynamic time warping distance clustering is used to identify the homologous botnets by category, and in order to improve detection. Speed, experiments will use SAX to reduce the dimension of the extracted curve, reducing the time cost without reducing the accuracy.

2019-01-16
Choudhary, S., Kesswani, N..  2018.  Detection and Prevention of Routing Attacks in Internet of Things. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1537–1540.

Internet of things (IoT) is the smart network which connects smart objects over the Internet. The Internet is untrusted and unreliable network and thus IoT network is vulnerable to different kind of attacks. Conventional encryption and authentication techniques sometimes fail on IoT based network and intrusion may succeed to destroy the network. So, it is necessary to design intrusion detection system for such network. In our paper, we detect routing attacks such as sinkhole and selective forwarding. We have also tried to prevent our network from these attacks. We designed detection and prevention algorithm, i.e., KMA (Key Match Algorithm) and CBA (Cluster- Based Algorithm) in MatLab simulation environment. We gave two intrusion detection mechanisms and compared their results as well. True positive intrusion detection rate for our work is between 50% to 80% with KMA and 76% to 96% with CBA algorithm.

2019-05-01
Douzi, S., Benchaji, I., ElOuahidi, B..  2018.  Hybrid Approach for Intrusion Detection Using Fuzzy Association Rules. 2018 2nd Cyber Security in Networking Conference (CSNet). :1-3.

Rapid development of internet and network technologies has led to considerable increase in number of attacks. Intrusion detection system is one of the important ways to achieve high security in computer networks. However, it have curse of dimensionality which tends to increase time complexity and decrease resource utilization. To improve the ability of detecting anomaly intrusions, a combined algorithm is proposed based on Weighted Fuzzy C-Mean Clustering Algorithm (WFCM) and Fuzzy logic. Decision making is performed in two stages. In the first stage, WFCM algorithm is applied to reduce the input data space. The reduced dataset is then fed to Fuzzy Logic scheme to build the fuzzy sets, membership function and the rules that decide whether an instance represents an anomaly or not.

2019-08-05
Xia, S., Li, N., Xiaofeng, T., Fang, C..  2018.  Multiple Attributes Based Spoofing Detection Using an Improved Clustering Algorithm in Mobile Edge Network. 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN). :242–243.

Information centric network (ICN) based Mobile Edge Computing (MEC) network has drawn growing attentions in recent years. The distributed network architecture brings new security problems, especially the identity security problem. Because of the cloud platform deployed on the edge of the MEC network, multiple channel attributes can be easily obtained and processed. Thus this paper proposes a multiple channel attributes based spoofing detection mechanism. To further reduce the complexity, we also propose an improved clustering algorithm. The simulation results indicate that the proposed spoofing detection method can provide near-optimal performance with extremely low complexity.

2019-06-10
Farooq, H. M., Otaibi, N. M..  2018.  Optimal Machine Learning Algorithms for Cyber Threat Detection. 2018 UKSim-AMSS 20th International Conference on Computer Modelling and Simulation (UKSim). :32-37.

With the exponential hike in cyber threats, organizations are now striving for better data mining techniques in order to analyze security logs received from their IT infrastructures to ensure effective and automated cyber threat detection. Machine Learning (ML) based analytics for security machine data is the next emerging trend in cyber security, aimed at mining security data to uncover advanced targeted cyber threats actors and minimizing the operational overheads of maintaining static correlation rules. However, selection of optimal machine learning algorithm for security log analytics still remains an impeding factor against the success of data science in cyber security due to the risk of large number of false-positive detections, especially in the case of large-scale or global Security Operations Center (SOC) environments. This fact brings a dire need for an efficient machine learning based cyber threat detection model, capable of minimizing the false detection rates. In this paper, we are proposing optimal machine learning algorithms with their implementation framework based on analytical and empirical evaluations of gathered results, while using various prediction, classification and forecasting algorithms.

2019-03-15
Bian, R., Xue, M., Wang, J..  2018.  Building Trusted Golden Models-Free Hardware Trojan Detection Framework Against Untrustworthy Testing Parties Using a Novel Clustering Ensemble Technique. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1458-1463.

As a result of the globalization of integrated circuits (ICs) design and fabrication process, ICs are becoming vulnerable to hardware Trojans. Most of the existing hardware Trojan detection works suppose that the testing stage is trustworthy. However, testing parties may conspire with malicious attackers to modify the results of hardware Trojan detection. In this paper, we propose a trusted and robust hardware Trojan detection framework against untrustworthy testing parties exploiting a novel clustering ensemble method. The proposed technique can expose the malicious modifications on Trojan detection results introduced by untrustworthy testing parties. Compared with the state-of-the-art detection methods, the proposed technique does not require fabricated golden chips or simulated golden models. The experiment results on ISCAS89 benchmark circuits show that the proposed technique can resist modifications robustly and detect hardware Trojans with decent accuracy (up to 91%).

2019-12-09
Yang, Chao, Chen, Xinghe, Song, Tingting, Jiang, Bin, Liu, Qin.  2018.  A Hybrid Recommendation Algorithm Based on Heuristic Similarity and Trust Measure. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1413–1418.
In this paper, we propose a hybrid collaborative filtering recommendation algorithm based on heuristic similarity and trust measure, in order to alleviate the problem of data sparsity, cold start and trust measure. Firstly, a new similarity measure is implemented by weighted fusion of multiple similarity influence factors obtained from the rating matrix, so that the similarity measure becomes more accurate. Then, a user trust relationship computing model is implemented by constructing the user's trust network based on the trust propagation theory. On this basis, a SIMT collaborative filtering algorithm is designed which integrates trust and similarity instead of the similarity in traditional collaborative filtering algorithm. Further, an improved K nearest neighbor recommendation based on clustering algorithm is implemented for generation of a better recommendation list. Finally, a comparative experiment on FilmTrust dataset shows that the proposed algorithm has improved the quality and accuracy of recommendation, thus overcome the problem of data sparsity, cold start and trust measure to a certain extent.
2019-03-22
Duan, J., Zeng, Z., Oprea, A., Vasudevan, S..  2018.  Automated Generation and Selection of Interpretable Features for Enterprise Security. 2018 IEEE International Conference on Big Data (Big Data). :1258-1265.

We present an effective machine learning method for malicious activity detection in enterprise security logs. Our method involves feature engineering, or generating new features by applying operators on features of the raw data. We generate DNF formulas from raw features, extract Boolean functions from them, and leverage Fourier analysis to generate new parity features and rank them based on their highest Fourier coefficients. We demonstrate on real enterprise data sets that the engineered features enhance the performance of a wide range of classifiers and clustering algorithms. As compared to classification of raw data features, the engineered features achieve up to 50.6% improvement in malicious recall, while sacrificing no more than 0.47% in accuracy. We also observe better isolation of malicious clusters, when performing clustering on engineered features. In general, a small number of engineered features achieve higher performance than raw data features according to our metrics of interest. Our feature engineering method also retains interpretability, an important consideration in cyber security applications.

2019-02-25
Ali, S. S., Maqsood, J..  2018.  .Net library for SMS spam detection using machine learning: A cross platform solution. 2018 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST). :470–476.

Short Message Service is now-days the most used way of communication in the electronic world. While many researches exist on the email spam detection, we haven't had the insight knowledge about the spam done within the SMS's. This might be because the frequency of spam in these short messages is quite low than the emails. This paper presents different ways of analyzing spam for SMS and a new pre-processing way to get the actual dataset of spam messages. This dataset was then used on different algorithm techniques to find the best working algorithm in terms of both accuracy and recall. Random Forest algorithm was then implemented in a real world application library written in C\# for cross platform .Net development. This library is capable of using a prebuild model for classifying a new dataset for spam and ham.

2017-12-20
Wang, Y., Huang, Y., Zheng, W., Zhou, Z., Liu, D., Lu, M..  2017.  Combining convolutional neural network and self-adaptive algorithm to defeat synthetic multi-digit text-based CAPTCHA. 2017 IEEE International Conference on Industrial Technology (ICIT). :980–985.
We always use CAPTCHA(Completely Automated Public Turing test to Tell Computers and Humans Apart) to prevent automated bot for data entry. Although there are various kinds of CAPTCHAs, text-based scheme is still applied most widely, because it is one of the most convenient and user-friendly way for daily user [1]. The fact is that segmentations of different types of CAPTCHAs are not always the same, which means one of CAPTCHA's bottleneck is the segmentation. Once we could accurately split the character, the problem could be solved much easier. Unfortunately, the best way to divide them is still case by case, which is to say there is no universal way to achieve it. In this paper, we present a novel algorithm to achieve state-of-the-art performance, what was more, we also constructed a new convolutional neural network as an add-on recognition part to stabilize our state-of-the-art performance of the whole CAPTCHA system. The CAPTCHA datasets we are using is from the State Administration for Industry& Commerce of the People's Republic of China. In this datasets, there are totally 33 entrances of CAPTCHAs. In this experiments, we assume that each of the entrance is known. Results are provided showing how our algorithms work well towards these CAPTCHAs.
Ren, H., Jiang, F., Wang, H..  2017.  Resource allocation based on clustering algorithm for hybrid device-to-device networks. 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). :1–6.
In order to improve the spectrum utilization rate of Device-to-Device (D2D) communication, we study the hybrid resource allocation problem, which allows both the resource reuse and resource dedicated mode to work simultaneously. Meanwhile, multiple D2D devices are permitted to share uplink cellular resources with some designated cellular user equipment (CUE). Combined with the transmission requirement of different users, the optimized resource allocation problem is built which is a NP-hard problem. A heuristic greedy throughput maximization (HGTM) based on clustering algorithm is then proposed to solve the above problem. Numerical results demonstrate that the proposed HGTM outperforms existing algorithms in the sum throughput, CUEs SINR performance and the number of accessed D2D deceives.
Kim, M., Cho, H..  2017.  Secure Data Collection in Spatially Clustered Wireless Sensor Networks. 2017 25th International Conference on Systems Engineering (ICSEng). :268–276.
A wireless sensor network (WSN) can provide a low cost and flexible solution to sensing and monitoring for large distributed applications. To save energy and prolong the network lifetime, the WSN is often partitioned into a set of spatial clusters. Each cluster includes sensor nodes with similar sensing data, and only a few sensor nodes (samplers) report their sensing data to a base node. Then the base node may predict the missed data of non-samplers using the spatial correlation between sensor nodes. The problem is that the WSN is vulnerable to internal security threat such as node compromise. If the samplers are compromised and report incorrect data intentionally, then the WSN should be contaminated rapidly due to the process of data prediction at the base node. In this paper, we propose three algorithms to detect compromised samplers for secure data collection in the WSN. The proposed algorithms leverage the unique property of spatial clustering to alleviate the overhead of compromised node detection. Experiment results indicate that the proposed algorithms can identify compromised samplers with a high accuracy and low energy consumption when as many as 50% sensor nodes are misbehaving.
2018-01-16
Kumar, P. S., Parthiban, L., Jegatheeswari, V..  2017.  Auditing of Data Integrity over Dynamic Data in Cloud. 2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM). :43–48.

Cloud computing is a new computing paradigm which encourages remote data storage. This facility shoots up the necessity of secure data auditing mechanism over outsourced data. Several mechanisms are proposed in the literature for supporting dynamic data. However, most of the existing schemes lack the security feature, which can withstand collusion attacks between the cloud server and the abrogated users. This paper presents a technique to overthrow the collusion attacks and the data auditing mechanism is achieved by means of vector commitment and backward unlinkable verifier local revocation group signature. The proposed work supports multiple users to deal with the remote cloud data. The performance of the proposed work is analysed and compared with the existing techniques and the experimental results are observed to be satisfactory in terms of computational and time complexity.