Biblio

Found 129 results

Filters: Keyword is Kernel  [Clear All Filters]
2021-05-13
Xu, Shawn, Venugopalan, Subhashini, Sundararajan, Mukund.  2020.  Attribution in Scale and Space. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :9677–9686.
We study the attribution problem for deep networks applied to perception tasks. For vision tasks, attribution techniques attribute the prediction of a network to the pixels of the input image. We propose a new technique called Blur Integrated Gradients (Blur IG). This technique has several advantages over other methods. First, it can tell at what scale a network recognizes an object. It produces scores in the scale/frequency dimension, that we find captures interesting phenomena. Second, it satisfies the scale-space axioms, which imply that it employs perturbations that are free of artifact. We therefore produce explanations that are cleaner and consistent with the operation of deep networks. Third, it eliminates the need for baseline parameter for Integrated Gradients for perception tasks. This is desirable because the choice of baseline has a significant effect on the explanations. We compare the proposed technique against previous techniques and demonstrate application on three tasks: ImageNet object recognition, Diabetic Retinopathy prediction, and AudioSet audio event identification. Code and examples are at https://github.com/PAIR-code/saliency.
2021-04-08
Zhang, J., Liao, Y., Zhu, X., Wang, H., Ding, J..  2020.  A Deep Learning Approach in the Discrete Cosine Transform Domain to Median Filtering Forensics. IEEE Signal Processing Letters. 27:276—280.
This letter presents a novel median filtering forensics approach, based on a convolutional neural network (CNN) with an adaptive filtering layer (AFL), which is built in the discrete cosine transform (DCT) domain. Using the proposed AFL, the CNN can determine the main frequency range closely related with the operational traces. Then, to automatically learn the multi-scale manipulation features, a multi-scale convolutional block is developed, exploring a new multi-scale feature fusion strategy based on the maxout function. The resultant features are further processed by a convolutional stream with pooling and batch normalization operations, and finally fed into the classification layer with the Softmax function. Experimental results show that our proposed approach is able to accurately detect the median filtering manipulation and outperforms the state-of-the-art schemes, especially in the scenarios of low image resolution and serious compression loss.
2020-12-14
Efendioglu, H. S., Asik, U., Karadeniz, C..  2020.  Identification of Computer Displays Through Their Electromagnetic Emissions Using Support Vector Machines. 2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA). :1–5.
As a TEMPEST information security problem, electromagnetic emissions from the computer displays can be captured, and reconstructed using signal processing techniques. It is necessary to identify the display type to intercept the image of the display. To determine the display type not only significant for attackers but also for protectors to prevent display compromising emanations. This study relates to the identification of the display type using Support Vector Machines (SVM) from electromagnetic emissions emitted from computer displays. After measuring the emissions using receiver measurement system, the signals were processed and training/test data sets were formed and the classification performance of the displays was examined with the SVM. Moreover, solutions for a better classification under real conditions have been proposed. Thus, one of the important step of the display image capture can accomplished by automatically identification the display types. The performance of the proposed method was evaluated in terms of confusion matrix and accuracy, precision, F1-score, recall performance measures.
2021-04-08
Boato, G., Dang-Nguyen, D., Natale, F. G. B. De.  2020.  Morphological Filter Detector for Image Forensics Applications. IEEE Access. 8:13549—13560.
Mathematical morphology provides a large set of powerful non-linear image operators, widely used for feature extraction, noise removal or image enhancement. Although morphological filters might be used to remove artifacts produced by image manipulations, both on binary and gray level documents, little effort has been spent towards their forensic identification. In this paper we propose a non-trivial extension of a deterministic approach originally detecting erosion and dilation of binary images. The proposed approach operates on grayscale images and is robust to image compression and other typical attacks. When the image is attacked the method looses its deterministic nature and uses a properly trained SVM classifier, using the original detector as a feature extractor. Extensive tests demonstrate that the proposed method guarantees very high accuracy in filtering detection, providing 100% accuracy in discriminating the presence and the type of morphological filter in raw images of three different datasets. The achieved accuracy is also good after JPEG compression, equal or above 76.8% on all datasets for quality factors above 80. The proposed approach is also able to determine the adopted structuring element for moderate compression factors. Finally, it is robust against noise addition and it can distinguish morphological filter from other filters.
2021-01-28
Siddiquie, K., Shafqat, N., Masood, A., Abbas, H., Shahid, W. b.  2020.  Profiling Vulnerabilities Threatening Dual Persona in Android Framework. 2019 International Conference on Advances in the Emerging Computing Technologies (AECT). :1—6.

Enterprises round the globe have been searching for a way to securely empower AndroidTM devices for work but have spurned away from the Android platform due to ongoing fragmentation and security concerns. Discrepant vulnerabilities have been reported in Android smartphones since Android Lollipop release. Smartphones can be easily hacked by installing a malicious application, visiting an infectious browser, receiving a crafted MMS, interplaying with plug-ins, certificate forging, checksum collisions, inter-process communication (IPC) abuse and much more. To highlight this issue a manual analysis of Android vulnerabilities is performed, by using data available in National Vulnerability Database NVD and Android Vulnerability website. This paper includes the vulnerabilities that risked the dual persona support in Android 5 and above, till Dec 2017. In our security threat analysis, we have identified a comprehensive list of Android vulnerabilities, vulnerable Android versions, manufacturers, and information regarding complete and partial patches released. So far, there is no published research work that systematically presents all the vulnerabilities and vulnerability assessment for dual persona feature of Android's smartphone. The data provided in this paper will open ways to future research and present a better Android security model for dual persona.

2021-04-08
Ayub, M. A., Continella, A., Siraj, A..  2020.  An I/O Request Packet (IRP) Driven Effective Ransomware Detection Scheme using Artificial Neural Network. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :319–324.
In recent times, there has been a global surge of ransomware attacks targeted at industries of various types and sizes from retail to critical infrastructure. Ransomware researchers are constantly coming across new kinds of ransomware samples every day and discovering novel ransomware families out in the wild. To mitigate this ever-growing menace, academia and industry-based security researchers have been utilizing unique ways to defend against this type of cyber-attacks. I/O Request Packet (IRP), a low-level file system I/O log, is a newly found research paradigm for defense against ransomware that is being explored frequently. As such in this study, to learn granular level, actionable insights of ransomware behavior, we analyze the IRP logs of 272 ransomware samples belonging to 18 different ransomware families captured during individual execution. We further our analysis by building an effective Artificial Neural Network (ANN) structure for successful ransomware detection by learning the underlying patterns of the IRP logs. We evaluate the ANN model with three different experimental settings to prove the effectiveness of our approach. The model demonstrates outstanding performance in terms of accuracy, precision score, recall score, and F1 score, i.e., in the range of 99.7%±0.2%.
2021-03-29
Liu, W., Niu, H., Luo, W., Deng, W., Wu, H., Dai, S., Qiao, Z., Feng, W..  2020.  Research on Technology of Embedded System Security Protection Component. 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications( AEECA). :21—27.

With the development of the Internet of Things (IoT), it has been widely deployed. As many embedded devices are connected to the network and massive amounts of security-sensitive data are stored in these devices, embedded devices in IoT have become the target of attackers. The trusted computing is a key technology to guarantee the security and trustworthiness of devices' execution environment. This paper focuses on security problems on IoT devices, and proposes a security architecture for IoT devices based on the trusted computing technology. This paper implements a security management system for IoT devices, which can perform integrity measurement, real-time monitoring and security management for embedded applications, providing a safe and reliable execution environment and whitelist-based security protection for IoT devices. This paper also designs and implements an embedded security protection system based on trusted computing technology, containing a measurement and control component in the kernel and a remote graphical management interface for administrators. The kernel layer enforces the integrity measurement and control of the embedded application on the device. The graphical management interface communicates with the remote embedded device through the TCP/IP protocol, and provides a feature-rich and user-friendly interaction interface. It implements functions such as knowledge base scanning, whitelist management, log management, security policy management, and cryptographic algorithm performance testing.

2021-05-13
Niu, Yingjiao, Lei, Lingguang, Wang, Yuewu, Chang, Jiang, Jia, Shijie, Kou, Chunjing.  2020.  SASAK: Shrinking the Attack Surface for Android Kernel with Stricter “seccomp” Restrictions. 2020 16th International Conference on Mobility, Sensing and Networking (MSN). :387–394.
The increasing vulnerabilities in Android kernel make it an attractive target to the attackers. Most kernel-targeted attacks are initiated through system calls. For security purpose, Google has introduced a Linux kernel security mechanism named “seccomp” since Android O to constrain the system calls accessible to the Android apps. Unfortunately, existing Android seccomp mechanism provides a fairly coarse-grained restriction by enforcing a unified seccomp policy containing more than 250 system calls for Android apps, which greatly reduces the effectiveness of seccomp. Also, it lacks an approach to profile the unnecessary system calls for a given Android app. In this paper we present a two-level control scheme named SASAK, which can shrink the attack surface of Android kernel by strictly constraining the system calls available to the Android apps with seccomp mechanism. First, instead of leveraging a unified seccomp policy for all Android apps, SASAK introduces an architecture- dedicated system call constraining by enforcing two separate and refined seccomp policies for the 32-bit Android apps and 64-bit Android apps, respectively. Second, we provide a tool to profile the necessary system calls for a given Android app and enforce an app-dedicated seccomp policy to further reduce the allowed system calls for the apps selected by the users. The app-dedicated control could dynamically change the seccomp policy for an app according to its actual needs. We implement a prototype of SASAK and the experiment results show that the architecture-dedicated constraining reduces 39.6% system calls for the 64-bit apps and 42.5% system calls for the 32-bit apps. 33% of the removed system calls for the 64-bit apps are vulnerable, and the number for the 32-bit apps is 18.8%. The app-dedicated restriction reduces about 66.9% and 62.5% system calls on average for the 64-bit apps and 32-bit apps, respectively. In addition, SASAK introduces negligible performance overhead.
2021-04-27
Furutani, S., Shibahara, T., Hato, K., Akiyama, M., Aida, M..  2020.  Sybil Detection as Graph Filtering. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
Sybils are users created for carrying out nefarious actions in online social networks (OSNs) and threaten the security of OSNs. Therefore, Sybil detection is an urgent security task, and various detection methods have been proposed. Existing Sybil detection methods are based on the relationship (i.e., graph structure) of users in OSNs. Structure-based methods can be classified into two categories: Random Walk (RW)-based and Belief Propagation (BP)-based. However, although almost all methods have been experimentally evaluated in terms of their performance and robustness to noise, the theoretical understanding of them is insufficient. In this paper, we interpret the Sybil detection problem from the viewpoint of graph signal processing and provide a framework to formulate RW- and BPbased methods as low-pass filtering. This framework enables us to theoretically compare RW- and BP-based methods and explain why BP-based methods perform well for scale-free graphs, unlike RW-based methods. Furthermore, by this framework, we relate RW- and BP-based methods and Graph Neural Networks (GNNs) and discuss the difference among these methods. Finally, we evaluate the validity of this framework through numerical experiments.
2021-08-17
Wang, Zhuoyao, Guo, Changguo, Fu, Zhipeng, Yang, Shazhou.  2020.  Identifying the Development Trend of ARM-based Server Ecosystem Using Linux Kernels. 2020 IEEE International Conference on Progress in Informatics and Computing (PIC). :284—288.
In the last couple of years ARM-based servers have been gradually adopted by cloud service providers and utilized in the data centers. Such tendency may provide great business opportunities for various companies in the industry. Hence, the ability to timely track the development trend of the ARM-based server ecosystem (ASE) from technical perspective is of great importance. In this paper the level of development of the ASE is quantitatively assessed based on open-source data analysis. In particular, statistical data is extracted from 42 Linux kernels to analyze the development process of the ASE. Furthermore, an estimate of the development trend of the ASE in the next 10 years is made based on the statistical data. The estimated results provide insight on when the ASE may become as mature as today's x86-based server ecosystem.
2020-12-28
Raju, R. S., Lipasti, M..  2020.  BlurNet: Defense by Filtering the Feature Maps. 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :38—46.

Recently, the field of adversarial machine learning has been garnering attention by showing that state-of-the-art deep neural networks are vulnerable to adversarial examples, stemming from small perturbations being added to the input image. Adversarial examples are generated by a malicious adversary by obtaining access to the model parameters, such as gradient information, to alter the input or by attacking a substitute model and transferring those malicious examples over to attack the victim model. Specifically, one of these attack algorithms, Robust Physical Perturbations (RP2), generates adversarial images of stop signs with black and white stickers to achieve high targeted misclassification rates against standard-architecture traffic sign classifiers. In this paper, we propose BlurNet, a defense against the RP2 attack. First, we motivate the defense with a frequency analysis of the first layer feature maps of the network on the LISA dataset, which shows that high frequency noise is introduced into the input image by the RP2 algorithm. To remove the high frequency noise, we introduce a depthwise convolution layer of standard blur kernels after the first layer. We perform a blackbox transfer attack to show that low-pass filtering the feature maps is more beneficial than filtering the input. We then present various regularization schemes to incorporate this lowpass filtering behavior into the training regime of the network and perform white-box attacks. We conclude with an adaptive attack evaluation to show that the success rate of the attack drops from 90% to 20% with total variation regularization, one of the proposed defenses.

2021-06-01
Chen, Zhanhao, Cao, Yinzhi.  2020.  JSKernel: Fortifying JavaScript against Web Concurrency Attacks via a Kernel-Like Structure. 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :64—75.
As portals to the Internet, web browsers constitute prominent targets for attacks. Existing defenses that redefine web APIs typically capture information related to a single JavaScript function. Thus, they fail to defend against the so-called web concurrency attacks that use multiple interleaved functions to trigger a browser vulnerability. In this paper, we propose JSKernel, the first generic framework that introduces a kernel concept into JavaScript to defend against web concurrency attacks. The JavaScript kernel, inspired from operating system concepts, enforces the execution order of JavaScript events and threads to fortify security. We implement a prototype of JSKernel deployable as add-on extensions to three widely used web browsers, namely Google Chrome, Mozilla Firefox, and Microsoft Edge. These open-source extensions are available at (https://github.com/jskernel2019/jskernel) along with a usability demo at (https://jskernel2019.github.io/). Our evaluation shows the prototype to be robust to web concurrency attacks, fast, and backward compatible with legacy websites.
2021-08-17
Tychalas, Dimitrios, Maniatakos, Michail.  2020.  IFFSET: In-Field Fuzzing of Industrial Control Systems using System Emulation. 2020 Design, Automation Test in Europe Conference Exhibition (DATE). :662—665.
Industrial Control Systems (ICS) have evolved in the last decade, shifting from proprietary software/hardware to contemporary embedded architectures paired with open-source operating systems. In contrast to the IT world, where continuous updates and patches are expected, decommissioning always-on ICS for security assessment can incur prohibitive costs to their owner. Thus, a solution for routinely assessing the cybersecurity posture of diverse ICS without affecting their operation is essential. Therefore, in this paper we introduce IFFSET, a platform that leverages full system emulation of Linux-based ICS firmware and utilizes fuzzing for security evaluation. Our platform extracts the file system and kernel information from a live ICS device, building an image which is emulated on a desktop system through QEMU. We employ fuzzing as a security assessment tool to analyze ICS specific libraries and find potential security threatening conditions. We test our platform with commercial PLCs, showcasing potential threats with no interruption to the control process.
2021-06-01
Xu, Meng, Kashyap, Sanidhya, Zhao, Hanqing, Kim, Taesoo.  2020.  Krace: Data Race Fuzzing for Kernel File Systems. 2020 IEEE Symposium on Security and Privacy (SP). :1643—1660.
Data races occur when two threads fail to use proper synchronization when accessing shared data. In kernel file systems, which are highly concurrent by design, data races are common mistakes and often wreak havoc on the users, causing inconsistent states or data losses. Prior fuzzing practices on file systems have been effective in uncovering hundreds of bugs, but they mostly focus on the sequential aspect of file system execution and do not comprehensively explore the concurrency dimension and hence, forgo the opportunity to catch data races.In this paper, we bring coverage-guided fuzzing to the concurrency dimension with three new constructs: 1) a new coverage tracking metric, alias coverage, specially designed to capture the exploration progress in the concurrency dimension; 2) an evolution algorithm for generating, mutating, and merging multi-threaded syscall sequences as inputs for concurrency fuzzing; and 3) a comprehensive lockset and happens-before modeling for kernel synchronization primitives for precise data race detection. These components are integrated into Krace, an end-to-end fuzzing framework that has discovered 23 data races in ext4, btrfs, and the VFS layer so far, and 9 are confirmed to be harmful.
2021-01-11
Khadka, A., Argyriou, V., Remagnino, P..  2020.  Accurate Deep Net Crowd Counting for Smart IoT Video acquisition devices. 2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS). :260—264.

A novel deep neural network is proposed, for accurate and robust crowd counting. Crowd counting is a complex task, as it strongly depends on the deployed camera characteristics and, above all, the scene perspective. Crowd counting is essential in security applications where Internet of Things (IoT) cameras are deployed to help with crowd management tasks. The complexity of a scene varies greatly, and a medium to large scale security system based on IoT cameras must cater for changes in perspective and how people appear from different vantage points. To address this, our deep architecture extracts multi-scale features with a pyramid contextual module to provide long-range contextual information and enlarge the receptive field. Experiments were run on three major crowd counting datasets, to test our proposed method. Results demonstrate our method supersedes the performance of state-of-the-art methods.

2021-08-17
Monakhov, Yuri, Kuznetsova, Anna, Monakhov, Mikhail, Telny, Andrey, Bednyatsky, Ilya.  2020.  Performance Evaluation of the Modified HTB Algorithm. 2020 Dynamics of Systems, Mechanisms and Machines (Dynamics). :1—5.
In this article, authors present the results of testing the modified HTB traffic control algorithm in an experimental setup. The algorithm is implemented as a Linux kernel module. An analysis of the experimental results revealed the effect of uneven packet loss in priority classes. In the second part of the article, the authors propose a solution to this problem by applying a distribution scheme for the excess of tokens, according to which excess class tokens are given to the leaf with the highest priority. The new modification of the algorithm was simulated in the AnyLogic environment. The results of an experimental study demonstrated that dividing the excess tokens of the parent class between daughter classes is less effective in terms of network performance than allocating the excess tokens to a high-priority class during the competition for tokens between classes. In general, a modification of the HTB algorithm that implements the proposed token surplus distribution scheme yields more consistent delay times for the high-priority class.
Abranches, Marcelo, Keller, Eric.  2020.  A Userspace Transport Stack Doesn't Have to Mean Losing Linux Processing. 2020 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :84—90.
While we cannot question the high performance capabilities of the kernel bypass approach in the network functions world, we recognize that the Linux kernel provides a rich ecosystem with an efficient resource management and an effective resource sharing ability that cannot be ignored. In this work we argue that by mixing kernel-bypass and in kernel processing can benefit applications and network function middleboxes. We leverage a high-performance user space TCP stack and recent additions to the Linux kernel to propose a hybrid approach (kernel-user space) to accelerate SDN/NFV deployments leveraging services of the reliable transport layer (i.e., stateful middleboxes, Layer 7 network functions and applications). Our results show that this approach enables highperformance, high CPU efficiency, and enhanced integration with the kernel ecosystem. We build our solution by extending mTCP which is the basis of some state-of-the-art L4-L7 NFV frameworks. By having more efficient CPU usage, NFV applications can have more CPU cycles available to run the network functions and applications logic. We show that for a CPU intense workload, mTCP/AF\_XDP can have up to 64% more throughput than the previous implementation. We also show that by receiving cooperation from the kernel, mTCP/AF\_XDP enables the creation of protection mechanisms for mTCP. We create a simulated DDoS attack and show that mTCP/AF\_XDP can maintain up to 287% more throughput than the unprotected system during the attack.
2021-07-27
Wang, X., Shen, Q., Luo, W., Wu, P..  2020.  RSDS: Getting System Call Whitelist for Container Through Dynamic and Static Analysis. 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). :600—608.
Container technology has been used for running multiple isolated operating system distros on a host or deploying large scale microservice-based applications. In most cases, containers share the same kernel with the host and other containers on the same host, and the application in the container can make system calls of the host kernel like a normal process on the host. Seccomp is a security mechanism for the Linux kernel, through which we can prohibit certain system calls from being executed by the program. Docker began to support the seccomp mechanism from version 1.10 and disables around 44 system calls out of 300+ by default. However, for a particular container, there are still many system calls that are unnecessary for running it allowed to be executed, and the abuse of system calls by a compromised container can trigger the security vulnerabilities of a host kernel. Unfortunately, Docker does not provide a way to get the necessary system calls for a particular container. In this paper, we propose RSDS, a method combining dynamic analysis and static analysis to get the necessary system calls for a particular container. Our experiments show that our solution can reduce system calls by 69.27%-85.89% compared to the default configuration on an x86-64 PC with Ubuntu 16.04 host OS and does not affect the functionalities of these containers.
2021-06-24
Teplyuk, P.A., Yakunin, A.G., Sharlaev, E.V..  2020.  Study of Security Flaws in the Linux Kernel by Fuzzing. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). :1–5.
An exceptional feature of the development of modern operating systems based on the Linux kernel is their leading use in cloud technologies, mobile devices and the Internet of things, which is accompanied by the emergence of more and more security threats at the kernel level. In order to improve the security of existing and future Linux distributions, it is necessary to analyze the existing approaches and tools for automated vulnerability detection and to conduct experimental security testing of some current versions of the kernel. The research is based on fuzzing - a software testing technique, which consists in the automated detection of implementation errors by sending deliberately incorrect data to the input of the fuzzer and analyzing the program's response at its output. Using the Syzkaller software tool, which implements a code coverage approach, vulnerabilities of the Linux kernel level were identified in stable versions used in modern distributions. The direction of this research is relevant and requires further development in order to detect zero-day vulnerabilities in new versions of the kernel, which is an important and necessary link in increasing the security of the Linux operating system family.
2021-08-17
Byrnes, Jeffrey, Hoang, Thomas, Mehta, Nihal Nitin, Cheng, Yuan.  2020.  A Modern Implementation of System Call Sequence Based Host-based Intrusion Detection Systems. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :218—225.
Much research is concentrated on improving models for host-based intrusion detection systems (HIDS). Typically, such research aims at improving a model's results (e.g., reducing the false positive rate) in the familiar static training/testing environment using the standard data sources. Matching advancements in the machine learning community, researchers in the syscall HIDS domain have developed many complex and powerful syscall-based models to serve as anomaly detectors. These models typically show an impressive level of accuracy while emphasizing on minimizing the false positive rate. However, with each proposed model iteration, we get further from the setting in which these models are intended to operate. As kernels become more ornate and hardened, the implementation space for anomaly detection models is narrowing. Furthermore, the rapid advancement of operating systems and the underlying complexity introduced dictate that the sometimes decades-old datasets have long been obsolete. In this paper, we attempt to bridge the gap between theoretical models and their intended application environments by examining the recent Linux kernel 5.7.0-rc1. In this setting, we examine the feasibility of syscall-based HIDS in modern operating systems and the constraints imposed on the HIDS developer. We discuss how recent advancements to the kernel have eliminated the previous syscall trace collect method of writing syscall table wrappers, and propose a new approach to generate data and place our detection model. Furthermore, we present the specific execution time and memory constraints that models must meet in order to be operable within their intended settings. Finally, we conclude with preliminary results from our model, which primarily show that in-kernel machine learning models are feasible, depending on their complexity.
2021-05-25
Dodson, Michael, Beresford, Alastair R., Richardson, Alexander, Clarke, Jessica, Watson, Robert N. M..  2020.  CHERI Macaroons: Efficient, host-based access control for cyber-physical systems. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :688–693.
Cyber-Physical Systems (CPS) often rely on network boundary defence as a primary means of access control; therefore, the compromise of one device threatens the security of all devices within the boundary. Resource and real-time constraints, tight hardware/software coupling, and decades-long service lifetimes complicate efforts for more robust, host-based access control mechanisms. Distributed capability systems provide opportunities for restoring access control to resource-owning devices; however, such a protection model requires a capability-based architecture for CPS devices as well as task compartmentalisation to be effective.This paper demonstrates hardware enforcement of network bearer tokens using an efficient translation between CHERI (Capability Hardware Enhanced RISC Instructions) architectural capabilities and Macaroon network tokens. While this method appears to generalise to any network-based access control problem, we specifically consider CPS, as our method is well-suited for controlling resources in the physical domain. We demonstrate the method in a distributed robotics application and in a hierarchical industrial control application, and discuss our plans to evaluate and extend the method.
2020-09-21
Corneci, Vlad-Mihai, Carabas, Costin, Deaconescu, Razvan, Tapus, Nicolae.  2019.  Adding Custom Sandbox Profiles to iOS Apps. 2019 18th RoEduNet Conference: Networking in Education and Research (RoEduNet). :1–5.
The massive adoption of mobile devices by both individuals and companies is raising many security concerns. The fact that such devices are handling sensitive data makes them a target for attackers. Many attack prevention mechanisms are deployed with a last line of defense that focuses on the containment principle. Currently, iOS treats each 3rd party application alike which may lead to security flaws. We propose a framework in which each application has a custom sandboxed environment. We investigated the current confinement architecture used by Apple and built a solution on top of it.
2020-09-28
Akaishi, Sota, Uda, Ryuya.  2019.  Classification of XSS Attacks by Machine Learning with Frequency of Appearance and Co-occurrence. 2019 53rd Annual Conference on Information Sciences and Systems (CISS). :1–6.
Cross site scripting (XSS) attack is one of the attacks on the web. It brings session hijack with HTTP cookies, information collection with fake HTML input form and phishing with dummy sites. As a countermeasure of XSS attack, machine learning has attracted a lot of attention. There are existing researches in which SVM, Random Forest and SCW are used for the detection of the attack. However, in the researches, there are problems that the size of data set is too small or unbalanced, and that preprocessing method for vectorization of strings causes misclassification. The highest accuracy of the classification was 98% in existing researches. Therefore, in this paper, we improved the preprocessing method for vectorization by using word2vec to find the frequency of appearance and co-occurrence of the words in XSS attack scripts. Moreover, we also used a large data set to decrease the deviation of the data. Furthermore, we evaluated the classification results with two procedures. One is an inappropriate procedure which some researchers tend to select by mistake. The other is an appropriate procedure which can be applied to an attack detection filter in the real environment.
2020-02-10
Zhang, Jiemin, Mao, Jian, Liu, Jinming, Tang, Zhi, Gu, Zhiling, Liu, Yongmei.  2019.  Cloud-based Multi-core Architecture against DNS Attacks. 2019 14th International Conference on Computer Science Education (ICCSE). :391–393.
The domain name resolution system provides support service for website visits as the basic service of the Internet. With the increase of DNS attacks, it has brought copious challenges to network security. The paper studies on the key defense technologies against DNS attacks based on the DNS principle. The multi-core customized to the DNS is adopted to analyze hardware kernel, while AI algorithms being realized for malicious flow cleaning and intelligent routing running on the cloud system established specifically for DNS. The designed DNS intelligent cloud system can provide high-efficiency domain name resolution in practice, while ensuring the network security.
2020-04-13
Shahbaz, Ajmal, Hoang, Van-Thanh, Jo, Kang-Hyun.  2019.  Convolutional Neural Network based Foreground Segmentation for Video Surveillance Systems. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. 1:86–89.
Convolutional Neural Networks (CNN) have shown astonishing results in the field of computer vision. This paper proposes a foreground segmentation algorithm based on CNN to tackle the practical challenges in the video surveillance system such as illumination changes, dynamic backgrounds, camouflage, and static foreground object, etc. The network is trained using the input of image sequences with respective ground-truth. The algorithm employs a CNN called VGG-16 to extract features from the input. The extracted feature maps are upsampled using a bilinear interpolation. The upsampled feature mask is passed through a sigmoid function and threshold to get the foreground mask. Binary cross entropy is used as the error function to compare the constructed foreground mask with the ground truth. The proposed algorithm was tested on two standard datasets and showed superior performance as compared to the top-ranked foreground segmentation methods.