Biblio

Filters: Keyword is magnetic transitions  [Clear All Filters]
2019-09-30
Bickel, J. E., Aidala, K. E..  2019.  Phase Diagram of 360° Domain Walls in Magnetic Rings. IEEE Transactions on Magnetics. 55:1–6.

One method to increase bit density in magnetic memory devices is to use multi-state structures, such as a ferromagnetic nanoring with multiple domain walls (DWs), to encode information. However, there is a competition between decreasing the ring size in order to more densely pack bits and increasing it to make multiple DWs stable. This paper examines the effects of ring geometry, specifically inner and outer diameters (ODs), on the formation of 360° DWs. By sequentially increasing the strength of an applied circular magnetic field, we examine how DWs form under the applied field and whether they remain when the field is returned to zero. We examine the relationships between field strength, number of walls initially formed, and the stability of these walls at zero field for different ring geometries. We demonstrate that there is a lower limit of 200 nm to the ring diameter for the formation of any 360° DWs under an applied field, and that a high number of 360° DWs are stable at remanence only for narrow rings with large ODs.

2018-05-16
Maity, T., Roy*, S..  2017.  Manipulation of Magnetic Properties by Tunable Magnetic Dipoles in a Ferromagnetic Thin Film. IEEE Magnetics Letters. 8:1–4.
We demonstrate how a unique nanomodulation within a continuous ferromagnetic film can induce magnetic dipoles at predefined, submicrometer scale locations, which can tune the global magnetic properties of the film due to dipole-dipole interactions. Arrays of tunable magnetic dipoles are generated with in-plane and out-of-plane directions, which can be rotated in-plane within the three-dimensional (3-D) modulated structure of a continuous film. In-plane magnetic dipole rotation enables a methodology to control overall magnetic properties of a ferromagnetic thin film. Formation of magnetic dipoles and their tunability were studied in detail by magnetic force microscopy, high-resolution magnetic measurements, and micromagnetic simulation of a nanomodulated Ni45Fe55 alloy film. A pattern larger than a single magnetic domain would normally form a vortex in the remanent state. However, here the unique 3-D nanostructure prevents vortex formation due to the competition between in-plane and out-of-plane dipole-dipole interaction giving rise to a metastable state. Experimentally, at zero remanence, the magnetization goes through a transformation from a metastable to a stable state, where the dipole-dipole interaction depends on their geometrical arrangement. Thus, the magnetic properties of the continuous film can be varied by the proposed pattern geometry. A detail analytical study of the dipolar energy for the system agrees well with the experimental and simulated results.