Biblio

Filters: Keyword is private key cryptography  [Clear All Filters]
2021-02-08
Pandey, A., Mahajan, D., Gupta, S., Rastogi, i.  2020.  Detection of Blind Signature Using Recursive Sum. 2020 6th International Conference on Signal Processing and Communication (ICSC). :262–265.
Digital signatures are suitable technology for public key encryption. Acceptance (non-repudiation) of digital messages and data origin authentication are one of the main usage of digital signature. Digital signature's security mainly depends on the keys (public and private). These keys are used to generate and validate digital signatures. In digital signature signing process is performed using signer's secret key. However, any attacker can present a blinded version of message encrypted with signer's public key and can get the original message. Therefore, this paper proposed a novel method to identify blinded version of digital signature. The proposed method has been tested mathematically and found to be more efficient to detect blind signatures.
Jain, S., Sharma, S., Chandavarkar, B. R..  2020.  Mitigating Man-in-the-Middle Attack in Digital Signature. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–5.
We all are living in the digital era, where the maximum of the information is available online. The digital world has made the transfer of information easy and provides the basic needs of security like authentication, integrity, nonrepudiation, etc. But, with the improvement in security, cyber-attacks have also increased. Security researchers have provided many techniques to prevent these cyber-attacks; one is a Digital Signature (DS). The digital signature uses cryptographic key pairs (public and private) to provide the message's integrity and verify the sender's identity. The private key used in the digital signature is confidential; if attackers find it by using various techniques, then this can result in an attack. This paper presents a brief introduction about the digital signature and how it is vulnerable to a man-in-the-middle attack. Further, it discusses a technique to prevent this attack in the digital signature.
2021-01-25
Swetha, K., Kalyan, S. P., Pavan, V., Roshini, A..  2020.  A Modified Tiny Asymmetric Encryption for Secure Ftp to Network. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). :1176–1180.
The target of this venture is to give the protected correspondence among the associated frameworks in the system. It gives the vital validation to the record moving in the system transmission. It comprises of 3 modules in particular encryption and unscrambling module, secret key verification to the information that needs to transmit through system. In this system, File Transfer Protocol can be used to execute Server-client innovation and the document can be scrambled and unscrambled by sending the end client through attachment programming of the end client.
2021-02-15
Chen, Z., Chen, J., Meng, W..  2020.  A New Dynamic Conditional Proxy Broadcast Re-Encryption Scheme for Cloud Storage and Sharing. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :569–576.
Security of cloud storage and sharing is concerned for years since a semi-trusted party, Cloud Server Provider (CSP), has access to user data on cloud server that may leak users' private data without constraint. Intuitively, an efficient solution of protecting cloud data is to encrypt it before uploading to the cloud server. However, a new requirement, data sharing, makes it difficult to manage secret keys among data owners and target users. Therefore conditional proxy broadcast re-encryption technology (CPBRE) is proposed in recent years to provide data encryption and sharing approaches for cloud environment. It enables a data owner to upload encrypted data to the cloud server and a third party proxy can re-encrypted cloud data under certain condition to a new ciphertext so that target users can decrypt re-encrypted data using their own private key. But few CPBRE schemes are applicable for a dynamic cloud environment. In this paper, we propose a new dynamic conditional proxy broadcast reencryption scheme that can be dynamic in system user setting and target user group. The initialization phase does not require a fixed system user setup so that users can join or leave the system in any time. And data owner can dynamically change the group of user he wants to share data with. We also provide security analysis which proves our scheme to be secure against CSP, and performance analysis shows that our scheme exceeds other schemes in terms of functionality and resource cost.
2020-10-30
Zhang, Jiliang, Qu, Gang.  2020.  Physical Unclonable Function-Based Key Sharing via Machine Learning for IoT Security. IEEE Transactions on Industrial Electronics. 67:7025—7033.

In many industry Internet of Things applications, resources like CPU, memory, and battery power are limited and cannot afford the classic cryptographic security solutions. Silicon physical unclonable function (PUF) is a lightweight security primitive that exploits manufacturing variations during the chip fabrication process for key generation and/or device authentication. However, traditional weak PUFs such as ring oscillator (RO) PUF generate chip-unique key for each device, which restricts their application in security protocols where the same key is required to be shared in resource-constrained devices. In this article, in order to address this issue, we propose a PUF-based key sharing method for the first time. The basic idea is to implement one-to-one input-output mapping with lookup table (LUT)-based interstage crossing structures in each level of inverters of RO PUF. Individual customization on configuration bits of interstage crossing structure and different RO selections with challenges bring high flexibility. Therefore, with the flexible configuration of interstage crossing structures and challenges, crossover RO PUF can generate the same shared key for resource-constrained devices, which enables a new application for lightweight key sharing protocols.

2021-03-29
Gururaj, P..  2020.  Identity management using permissioned blockchain. 2020 International Conference on Mainstreaming Block Chain Implementation (ICOMBI). :1—3.

Authenticating a person's identity has always been a challenge. While attempts are being made by government agencies to address this challenge, the citizens are being exposed to a new age problem of Identity management. The sharing of photocopies of identity cards in order to prove our identity is a common sight. From score-card to Aadhar-card, the details of our identity has reached many unauthorized hands during the years. In India the identity thefts accounts for 77% [1] of the fraud cases, and the threats are trending. Programs like e-Residency by Estonia[2], Bitnation using Ethereum[3] are being devised for an efficient Identity Management. Even the US Home Land Security is funding a research with an objective of “Design information security and privacy concepts on the Blockchain to support identity management capabilities that increase security and productivity while decreasing costs and security risks for the Homeland Security Enterprise (HSE).” [4] This paper will discuss the challenges specific to India around Identity Management, and the possible solution that the Distributed ledger, hashing algorithms and smart contracts can offer. The logic of hashing the personal data, and controlling the distribution of identity using public-private keys with Blockchain technology will be discussed in this paper.

2021-03-15
Babu, S. A., Ameer, P. M..  2020.  Physical Adversarial Attacks Against Deep Learning Based Channel Decoding Systems. 2020 IEEE Region 10 Symposium (TENSYMP). :1511–1514.

Deep Learning (DL), in spite of its huge success in many new fields, is extremely vulnerable to adversarial attacks. We demonstrate how an attacker applies physical white-box and black-box adversarial attacks to Channel decoding systems based on DL. We show that these attacks can affect the systems and decrease performance. We uncover that these attacks are more effective than conventional jamming attacks. Additionally, we show that classical decoding schemes are more robust than the deep learning channel decoding systems in the presence of both adversarial and jamming attacks.

2020-12-15
Li, C., He, J., Liu, S., Guo, D., Song, L..  2020.  On Secrecy Key of a class of Secure Asymmetric Multilevel Diversity Coding System. 2020 IEEE International Symposium on Information Theory (ISIT). :879—883.
With the explosive development of big data, it is necessary to sort the data according to their importance or priorities. The sources with different importance levels can be modeled by the multilevel diversity coding systems (MDCS). Another trend in future communication networks, say 5G wireless networks and Internet of Things, is that users may obtain their data from all available sources, even from devices belonging to other users. Then, the privacy of data becomes a crucial issue. In a recent work by Li et al., the secure asymmetric MDCS (S-AMDCS) with wiretap channels was investigated, where the wiretapped messages do not leak any information about the sources (i.e. perfect secrecy). It was shown that superposition (source-separate coding) is not optimal for the general S-AMDCS and the exact full secure rate region was proved for a class of S-AMDCS. In addition, a bound on the key size of the secure rate region was provided as well. As a further step on the SAMDCS problem, this paper mainly focuses on the key size characterization. Specifically, the constraints on the key size of superposition secure rate region are proved and a counterexample is found to show that the bound on the key size of the exact secure rate region provided by Li et al. is not tight. In contrast, tight necessary and sufficient constraints on the secrecy key size of the counterexample, which is the four-encoder S-AMDCS, are proved.
2021-02-08
Pramanik, S., Bandyopadhyay, S. K., Ghosh, R..  2020.  Signature Image Hiding in Color Image using Steganography and Cryptography based on Digital Signature Concepts. 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). :665–669.
Data Transmission in network security is one of the most vital issues in today's communication world. The outcome of the suggested method is outlined over here. Enhanced security can be achieved by this method. The vigorous growth in the field of information communication has made information transmission much easier. But this type of advancement has opened up many possibilities of information being snooped. So, day-by-day maintaining of information security is becoming an inseparable part of computing and communication. In this paper, the authors have explored techniques that blend cryptography & steganography together. In steganography, information is kept hidden behind a cover image. In this paper, approaches for information hiding using both cryptography & steganography is proposed keeping in mind two considerations - size of the encrypted object and degree of security. Here, signature image information is kept hidden into cover image using private key of sender & receiver, which extracts the information from stego image using a public key. This approach can be used for message authentication, message integrity & non-repudiation purpose.
2021-03-22
Wang, X., Chi, Y., Zhang, Y..  2020.  Traceable Ciphertext Policy Attribute-based Encryption Scheme with User Revocation for Cloud Storage. 2020 International Conference on Computer Engineering and Application (ICCEA). :91–95.
Ciphertext policy Attribute-based encryption (CPABE) plays an increasingly important role in the field of fine-grained access control for cloud storage. However, The exiting solution can not balance the issue of user identity tracking and user revocation. In this paper, we propose a CP-ABE scheme that supports association revocation and traceability. This scheme uses identity directory technology to realize single user revocation and associated user revocation, and the ciphertext re-encryption technology guarantees the forward security of revocation without updating the private key. In addition, we can accurately trace the identity of the user according to the decryption private key and effectively solve the problem of key abuse. This scheme is proved to be safe and traceable under the standard model, and can effectively control the computational and storage costs while maintaining functional advantages. It is suitable for the practical scenarios of tracking audit and user revocation.
2020-08-24
Gohil, Nikhil N., Vemuri, Ranga R..  2019.  Automated Synthesis of Differential Power Attack Resistant Integrated Circuits. 2019 IEEE National Aerospace and Electronics Conference (NAECON). :204–211.
Differential Power Analysis (DPA) attacks were shown to be effective in recovering the secret key information from a variety cryptographic systems. In response, several design methods, ranging from the cell level to the algorithmic level, have been proposed to defend against DPA attacks. Cell level solutions depend on DPA resistant cell designs which attempt to minimize power variance during transitions while minimizing area and power consumption. In this paper, we discuss how a differential circuit design style is incorporated into a COTS tool set, resulting in a fully automated synthesis system DPA resistant integrated circuits. Based on the Secure Differential Multiplexer Logic (SDMLp), this system can be used to synthesize complete cryptographic processors which provide strong defense against DPA while minimizing area and power overhead. We discuss how both combinational and sequential cells are incorporated in the cell library. We show the effectiveness of the tool chain by using it to automatically synthesize the layouts, from RT level Verilog specifications, of both the DES and AES encryption ICs in 90nm CMOS. In each case, we present experimental data to demonstrate DPA attack resistance and area, power and performance overhead and compare these with circuits synthesized in another differential logic called MDPL as well as standard CMOS synthesis results.
2020-08-10
Yue, Tongxu, Wang, Chuang, Zhu, Zhi-xiang.  2019.  Hybrid Encryption Algorithm Based on Wireless Sensor Networks. 2019 IEEE International Conference on Mechatronics and Automation (ICMA). :690–694.
Based on the analysis of existing wireless sensor networks(WSNs) security vulnerability, combining the characteristics of high encryption efficiency of the symmetric encryption algorithm and high encryption intensity of asymmetric encryption algorithm, a hybrid encryption algorithm based on wireless sensor networks is proposed. Firstly, by grouping plaintext messages, this algorithm uses advanced encryption standard (AES) of symmetric encryption algorithm and elliptic curve encryption (ECC) of asymmetric encryption algorithm to encrypt plaintext blocks, then uses data compression technology to get cipher blocks, and finally connects MAC address and AES key encrypted by ECC to form a complete ciphertext message. Through the description and implementation of the algorithm, the results show that the algorithm can reduce the encryption time, decryption time and total running time complexity without losing security.
2020-06-08
Tan, Li Xin, Wee, Jing Wei Shannen, Chan, Jun Rong, Soh, Wei Jie, Yap, Chern Nam.  2019.  Integrate Dragonfly Key Exchange (IETF - RFC 7664) into Arithmetic Circuit Homomorphic Encryption. 2019 IEEE 24th Pacific Rim International Symposium on Dependable Computing (PRDC). :85–851.
This is an extension of an ongoing research project on Fully Homomorphic Encryption. Arithmetic Circuit Homomorphic Encryption (ACHE) [1] was implemented based on (TFHE) Fast Fully Homomorphic Encryption over the Torus. Just like many Homomorphic Encryption methods, ACHE does not integrate with any authentication method. Thus, this was an issue that this paper attempts to resolve. This paper will focus on the implementation method of integrating RFC7664 [2] into ACHE. Next, the paper will further discuss latency incurred due to key generation, the latency of transmission of public and private keys. Last but not least, the paper will also discuss the key size generated and its significance.
2020-03-18
Yang, Xiaodong, Chen, Guilan, Wang, Meiding, Pei, Xizhen.  2019.  Lightweight Searchable Encryption Scheme Based on Certificateless Cryptosystem. 2019 4th International Conference on Mechanical, Control and Computer Engineering (ICMCCE). :669–6693.
Searchable encryption technology can guarantee the confidentiality of cloud data and the searchability of ciphertext data, which has a very broad application prospect in cloud storage environments. However, most existing searchable encryption schemes have problems, such as excessive computational overhead and low security. In order to solve these problems, a lightweight searchable encryption scheme based on certificateless cryptosystem is proposed. The user's final private key consists of partial private key and secret value, which effectively solves the certificate management problem of the traditional cryptosystem and the key escrow problem of identity-based cryptosystem. At the same time, the introduction of third-party manager has significantly reduced the burden in the cloud server and achieved lightweight multi-user ciphertext retrieval. In addition, the data owner stores the file index in the third-party manager, while the file ciphertext is stored in the cloud server. This ensures that the file index is not known by the cloud server. The analysis results show that the scheme satisfies trapdoor indistinguishability and can resist keyword guessing attacks. Compared with similar certificateless encryption schemes, it has higher computational performance in key generation, keyword encryption, trapdoor generation and keyword search.
2020-03-23
Korenda, Ashwija Reddy, Afghah, Fatemeh, Cambou, Bertrand, Philabaum, Christopher.  2019.  A Proof of Concept SRAM-based Physically Unclonable Function (PUF) Key Generation Mechanism for IoT Devices. 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). :1–8.
This paper provides a proof of concept for using SRAM based Physically Unclonable Functions (PUFs) to generate private keys for IoT devices. PUFs are utilized, as there is inadequate protection for secret keys stored in the memory of the IoT devices. We utilize a custom-made Arduino mega shield to extract the fingerprint from SRAM chip on demand. We utilize the concepts of ternary states to exclude the cells which are easily prone to flip, allowing us to extract stable bits from the fingerprint of the SRAM. Using the custom-made software for our SRAM device, we can control the error rate of the PUF to achieve an adjustable memory-based PUF for key generation. We utilize several fuzzy extractor techniques based on using different error correction coding methods to generate secret keys from the SRAM PUF, and study the trade-off between the false authentication rate and false rejection rate of the PUF.
2020-03-30
Khan, Abdul Ghaffar, Zahid, Amjad Hussain, Hussain, Muzammil, Riaz, Usama.  2019.  Security Of Cryptocurrency Using Hardware Wallet And QR Code. 2019 International Conference on Innovative Computing (ICIC). :1–10.
Today, the privacy and the security of any organization are the key requirement, the digital online transaction of money or coins also needed a certain level of security not only during the broadcasting of the transaction but before the sending of the transaction. In this research paper we proposed and implemented a cryptocurrency (Bitcoin) wallet for the android operating system, by using the QR code-based android application and a secure private key storage (Cold Wallet). Two android applications have been implemented one of them is called cold wallet and the other one is hot wallet. Cold wallet (offline) is to store and generate the private key addresses for secure transaction confirmation and the hot wallet is used to send bitcoin to the network. Hot wallet application gives facility to the user view history of performed transactions, to send and compose a new bitcoin transaction, receive bitcoin, sign it and send it to the network. By using the process of cross QR code scanning of the hot and cold wallet to the identification, validation and authentication of the user made it secure.
2020-02-10
Iftikhar, Jawad, Hussain, Sajid, Mansoor, Khwaja, Ali, Zeeshan, Chaudhry, Shehzad Ashraf.  2019.  Symmetric-Key Multi-Factor Biometric Authentication Scheme. 2019 2nd International Conference on Communication, Computing and Digital systems (C-CODE). :288–292.
Authentication is achieved by using different techniques, like using smart-card, identity password and biometric techniques. Some of the proposed schemes use a single factor for authentication while others combine multiple ways to provide multi-factor authentication for better security. lately, a new scheme for multi-factor authentication was presented by Cao and Ge and claimed that their scheme is highly secure and can withstand against all known attacks. In this paper, it is revealed that their scheme is still vulnerable and have some loopholes in term of reflection attack. Therefore, an improved scheme is proposed to overcome the security weaknesses of Cao and Ge's scheme. The proposed scheme resists security attacks and secure. Formal testing is carried out under a broadly-accepted simulated tool ProVerif which demonstrates that the proposed scheme is well secure.
2020-03-04
Yi, Zhuo, Du, Xuehui, Liao, Ying, Lu, Xin.  2019.  An Access Authentication Algorithm Based on a Hierarchical Identity-Based Signature over Lattice for the Space-Ground Integrated Network. 2019 International Conference on Advanced Communication Technologies and Networking (CommNet). :1–9.

Access authentication is a key technology to identify the legitimacy of mobile users when accessing the space-ground integrated networks (SGIN). A hierarchical identity-based signature over lattice (L-HIBS) based mobile access authentication mechanism is proposed to settle the insufficiencies of existing access authentication methods in SGIN such as high computational complexity, large authentication delay and no-resistance to quantum attack. Firstly, the idea of hierarchical identity-based cryptography is introduced according to hierarchical distribution of nodes in SGIN, and a hierarchical access authentication architecture is built. Secondly, a new L-HIBS scheme is constructed based on the Small Integer Solution (SIS) problem to support the hierarchical identity-based cryptography. Thirdly, a mobile access authentication protocol that supports bidirectional authentication and shared session key exchange is designed with the aforementioned L-HIBS scheme. Results of theoretical analysis and simulation experiments suggest that the L-HIBS scheme possesses strong unforgeability of selecting identity and adaptive selection messages under the standard security model, and the authentication protocol has smaller computational overhead and shorter private keys and shorter signature compared to given baseline protocols.

2020-09-04
Zhao, Zhen, Lai, Jianchang, Susilo, Willy, Wang, Baocang, Hu, Yupu, Guo, Fuchun.  2019.  Efficient Construction for Full Black-Box Accountable Authority Identity-Based Encryption. IEEE Access. 7:25936—25947.

Accountable authority identity-based encryption (A-IBE), as an attractive way to guarantee the user privacy security, enables a malicious private key generator (PKG) to be traced if it generates and re-distributes a user private key. Particularly, an A-IBE scheme achieves full black-box security if it can further trace a decoder box and is secure against a malicious PKG who can access the user decryption results. In PKC'11, Sahai and Seyalioglu presented a generic construction for full black-box A-IBE from a primitive called dummy identity-based encryption, which is a hybrid between IBE and attribute-based encryption (ABE). However, as the complexity of ABE, their construction is inefficient and the size of private keys and ciphertexts in their instantiation is linear in the length of user identity. In this paper, we present a new efficient generic construction for full black-box A-IBE from a new primitive called token-based identity-based encryption (TB-IBE), without using ABE. We first formalize the definition and security model for TB-IBE. Subsequently, we show that a TB-IBE scheme satisfying some properties can be converted to a full black-box A-IBE scheme, which is as efficient as the underlying TB-IBE scheme in terms of computational complexity and parameter sizes. Finally, we give an instantiation with the computational complexity as O(1) and the constant size master key pair, private keys, and ciphertexts.

Qin, Baodong, Zheng, Dong.  2019.  Generic Approach to Outsource the Decryption of Attribute-Based Encryption in Cloud Computing. IEEE Access. 7:42331—42342.

The notion of attribute-based encryption with outsourced decryption (OD-ABE) was proposed by Green, Hohenberger, and Waters. In OD-ABE, the ABE ciphertext is converted to a partially-decrypted ciphertext that has a shorter bit length and a faster decryption time than that of the ABE ciphertext. In particular, the transformation can be performed by a powerful third party with a public transformation key. In this paper, we propose a generic approach for constructing ABE with outsourced decryption from standard ABE, as long as the later satisfies some additional properties. Its security can be reduced to the underlying standard ABE in the selective security model by a black-box way. To avoid the drawback of selective security in practice, we further propose a modified decryption outsourcing mode so that our generic construction can be adapted to satisfying adaptive security. This partially solves the open problem of constructing an OD-ABE scheme, and its adaptive security can be reduced to the underlying ABE scheme in a black-box way. Then, we present some concrete constructions that not only encompass existing ABE outsourcing schemes of Green et al., but also result in new selectively/adaptively-secure OD-ABE schemes with more efficient transformation key generation algorithm. Finally, we use the PBC library to test the efficiency of our schemes and compare the results with some previous ones, which shows that our schemes are more efficient in terms of decryption outsourcing and transformation key generation.

2020-01-27
Takahashi, Ririka, Tanizawa, Yoshimichi, Dixon, Alexander.  2019.  A High-Speed Key Management Method for Quantum Key Distribution Network. 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN). :437–442.

Quantum Key Distribution (QKD) is a technique for sharing encryption keys between two adjacent nodes. It provides unconditional secure communication based on the laws of physics. From the viewpoint of network research, QKD is considered to be a component for providing secure communication in network systems. A QKD network enables each node to exchange encryption keys with arbitrary nodes. However previous research did not focus on the processing speed of the key management method essential for a QKD network. This paper focuses on the key management method assuming a high-speed QKD system for which we clarify the design, propose a high-speed method, and evaluate the throughput. The proposed method consists of four modules: (1) local key manager handling the keys generated by QKD, (2) one-time pad tunnel manager establishing the transparent encryption link, (3) global key manager generating the keys for application communication, and (4) web API providing keys to the application. The proposed method was implemented in software and evaluated by emulating QKD key generation and application key consumption. The evaluation result reveals that it is capable of handling the encryption keys at a speed of 414 Mb/s, 185 Mb/s, 85 Mb/s and 971 Mb/s, for local key manager, one-time pad tunnel manager, global key manager and web API, respectively. These are sufficient for integration with a high-speed QKD system. Furthermore, the method allows the high-speed QKD system consisting of two nodes to expand corresponding to the size of the QKD network without losing the speed advantage.

2020-03-04
Korzhik, Valery, Starostin, Vladimir, Morales-Luna, Guillermo, Kabardov, Muaed, Gerasimovich, Aleksandr, Yakovlev, Victor, Zhuvikin, Aleksey.  2019.  Information Theoretical Secure Key Sharing Protocol for Noiseless Public Constant Parameter Channels without Cryptographic Assumptions. 2019 Federated Conference on Computer Science and Information Systems (FedCSIS). :327–332.

We propose a new key sharing protocol executed through any constant parameter noiseless public channel (as Internet itself) without any cryptographic assumptions and protocol restrictions on SNR in the eavesdropper channels. This protocol is based on extraction by legitimate users of eigenvalues from randomly generated matrices. A similar protocol was proposed recently by G. Qin and Z. Ding. But we prove that, in fact, this protocol is insecure and we modify it to be both reliable and secure using artificial noise and privacy amplification procedure. Results of simulation prove these statements.

2020-01-20
Bauer, Sergei, Brunner, Martin, Schartner, Peter.  2019.  Lightweight Authentication for Low-End Control Units with Hardware Based Individual Keys. 2019 Third IEEE International Conference on Robotic Computing (IRC). :425–426.

In autonomous driving, security issues from robotic and automotive applications are converging toward each other. A novel approach for deriving secret keys using a lightweight cipher in the firmware of low-end control units is introduced. By evaluating the method on a typical low-end automotive platform, we demonstrate the reusability of the cipher for message authentication. The proposed solution counteracts a known security issue in the robotics and automotive domain.

2020-03-02
Nag, Soumyajit, Banerjee, Subhasish, Sen, Srijon.  2019.  A New Three Party Authenticated Key Agreement Protocol Which Is Defiant towards Password Guessing Attack. 2019 International Conference on Automation, Computational and Technology Management (ICACTM). :13–18.

In order to develop a `common session secret key' though the insecure channel, cryptographic Key Agreement Protocol plays a major role. Many researchers' cryptographic protocol uses smart card as a medium to store transaction secret values. The tampered resistance property of smart card is unable to defend the secret values from side channel attacks. It means a lost smart card is an easy target for any attacker. Though password authentication helps the protocol to give secrecy but on-line as well as off-line password guessing attack can make the protocol vulnerable. The concerned paper manifested key agreement protocol based on three party authenticated key agreement protocol to defend all password related attacks. The security analysis of our paper has proven that the accurate guess of the password of a legitimate user will not help the adversary to generate a common session key.

2020-03-04
Yao, Li, Peng, Linning, Li, Guyue, Fu, Hua, Hu, Aiqun.  2019.  A Simulation and Experimental Study of Channel Reciprocity in TDD and FDD Wiretap Channels. 2019 IEEE 19th International Conference on Communication Technology (ICCT). :113–117.

In recent years, secret key generation based on physical layer security has gradually attracted high attentions. The wireless channel reciprocity and eavesdropping attack are critical problems in secret key generation studies. In this paper, we carry out a simulation and experimental study of channel reciprocity in terms of measuring channel state information (CSI) in both time division duplexing (TDD) and frequency division duplexing (FDD) modes. In simulation study, a close eavesdropping wiretap channel model is introduced to evaluate the security of the CSI by using Pearson correlation coefficient. In experimental study, an indoor wireless CSI measurement system is built with N210 and X310 universal software radio peripheral (USRP) platforms. In TDD mode, theoretical analysis and most of experimental results show that the closer eavesdropping distance, the higher CSI correlation coefficient between eavesdropping channel and legitimate channel. However, in actual environment, when eavesdropping distance is too close (less than 1/4 wavelength), this CSI correlation seriously dropped. In FDD mode, both theoretical analysis and experimental results show that the wireless channel still owns some reciprocity. When frequency interval increases, the FDD channel reciprocity in actual environment is better than that in theoretical analysis.