Biblio

Found 429 results

Filters: Keyword is Training  [Clear All Filters]
2021-06-24
Ali, Muhammad, Hu, Yim-Fun, Luong, Doanh Kim, Oguntala, George, Li, Jian-Ping, Abdo, Kanaan.  2020.  Adversarial Attacks on AI based Intrusion Detection System for Heterogeneous Wireless Communications Networks. 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC). :1–6.
It has been recognized that artificial intelligence (AI) will play an important role in future societies. AI has already been incorporated in many industries to improve business processes and automation. Although the aviation industry has successfully implemented flight management systems or autopilot to automate flight operations, it is expected that full embracement of AI remains a challenge. Given the rigorous validation process and the requirements for the highest level of safety standards and risk management, AI needs to prove itself being safe to operate. This paper addresses the safety issues of AI deployment in an aviation network compatible with the Future Communication Infrastructure that utilizes heterogeneous wireless access technologies for communications between the aircraft and the ground networks. It further considers the exploitation of software defined networking (SDN) technologies in the ground network while the adoption of SDN in the airborne network can be optional. Due to the nature of centralized management in SDN-based network, the SDN controller can become a single point of failure or a target for cyber attacks. To countermeasure such attacks, an intrusion detection system utilises AI techniques, more specifically deep neural network (DNN), is considered. However, an adversary can target the AI-based intrusion detection system. This paper examines the impact of AI security attacks on the performance of the DNN algorithm. Poisoning attacks targeting the DSL-KDD datasets which were used to train the DNN algorithm were launched at the intrusion detection system. Results showed that the performance of the DNN algorithm has been significantly degraded in terms of the mean square error, accuracy rate, precision rate and the recall rate.
2021-05-13
Li, Xu, Zhong, Jinghua, Wu, Xixin, Yu, Jianwei, Liu, Xunying, Meng, Helen.  2020.  Adversarial Attacks on GMM I-Vector Based Speaker Verification Systems. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :6579—6583.
This work investigates the vulnerability of Gaussian Mixture Model (GMM) i-vector based speaker verification systems to adversarial attacks, and the transferability of adversarial samples crafted from GMM i-vector based systems to x-vector based systems. In detail, we formulate the GMM i-vector system as a scoring function of enrollment and testing utterance pairs. Then we leverage the fast gradient sign method (FGSM) to optimize testing utterances for adversarial samples generation. These adversarial samples are used to attack both GMM i-vector and x-vector systems. We measure the system vulnerability by the degradation of equal error rate and false acceptance rate. Experiment results show that GMM i-vector systems are seriously vulnerable to adversarial attacks, and the crafted adversarial samples are proved to be transferable and pose threats to neural network speaker embedding based systems (e.g. x-vector systems).
Nakhushev, Rakhim S., Sukhanova, Natalia V..  2020.  Application of the Neural Networks for Cryptographic Information Security. 2020 International Conference Quality Management, Transport and Information Security, Information Technologies (IT QM IS). :421–423.
The object of research is information security. The tools used for research are artificial neural networks. The goal is to increase the cryptography security. The problems are: the big volume of information, the expenses for neural networks design and training. It is offered to use the neural network for the cryptographic transformation of information.
Mahmoud, Loreen, Praveen, Raja.  2020.  Artificial Neural Networks for detecting Intrusions: A survey. 2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). :41–48.
Nowadays, the networks attacks became very sophisticated and hard to be recognized, The traditional types of intrusion detection systems became inefficient in predicting new types of attacks. As the IDS is an important factor in securing the network in the real time, many new effective IDS approaches have been proposed. In this paper, we intend to discuss different Artificial Neural Networks based IDS approaches, also we are going to categorize them in four categories (normal ANN, DNN, CNN, RNN) and make a comparison between them depending on different performance parameters (accuracy, FNR, FPR, training time, epochs and the learning rate) and other factors like the network structure, the classification type, the used dataset. At the end of the survey, we will mention the merits and demerits of each approach and suggest some enhancements to avoid the noticed drawbacks.
Hu, Xiaoyi, Wang, Ke.  2020.  Bank Financial Innovation and Computer Information Security Management Based on Artificial Intelligence. 2020 2nd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI). :572—575.
In recent years, with the continuous development of various new Internet technologies, big data, cloud computing and other technologies have been widely used in work and life. The further improvement of data scale and computing capability has promoted the breakthrough development of artificial intelligence technology. The generalization and classification of financial science and technology not only have a certain impact on the traditional financial business, but also put forward higher requirements for commercial banks to operate financial science and technology business. Artificial intelligence brings fresh experience to financial services and is conducive to increasing customer stickiness. Artificial intelligence technology helps the standardization, modeling and intelligence of banking business, and helps credit decision-making, risk early warning and supervision. This paper first discusses the influence of artificial intelligence on financial innovation, and on this basis puts forward measures for the innovation and development of bank financial science and technology. Finally, it discusses the problem of computer information security management in bank financial innovation in the era of artificial intelligence.
2021-03-09
MATSUNAGA, Y., AOKI, N., DOBASHI, Y., KOJIMA, T..  2020.  A Black Box Modeling Technique for Distortion Stomp Boxes Using LSTM Neural Networks. 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). :653–656.
This paper describes an experimental result of modeling stomp boxes of the distortion effect based on a machine learning approach. Our proposed technique models a distortion stomp box as a neural network consisting of LSTM layers. In this approach, the neural network is employed for learning the nonlinear behavior of the distortion stomp boxes. All the parameters for replicating the distortion sound are estimated through its training process using the input and output signals obtained from some commercial stomp boxes. The experimental result indicates that the proposed technique may have a certain appropriateness to replicate the distortion sound by using the well-trained neural networks.
2021-06-01
Xu, Lei, Gao, Zhimin, Fan, Xinxin, Chen, Lin, Kim, Hanyee, Suh, Taeweon, Shi, Weidong.  2020.  Blockchain Based End-to-End Tracking System for Distributed IoT Intelligence Application Security Enhancement. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1028–1035.
IoT devices provide a rich data source that is not available in the past, which is valuable for a wide range of intelligence applications, especially deep neural network (DNN) applications that are data-thirsty. An established DNN model provides useful analysis results that can improve the operation of IoT systems in turn. The progress in distributed/federated DNN training further unleashes the potential of integration of IoT and intelligence applications. When a large number of IoT devices are deployed in different physical locations, distributed training allows training modules to be deployed to multiple edge data centers that are close to the IoT devices to reduce the latency and movement of large amounts of data. In practice, these IoT devices and edge data centers are usually owned and managed by different parties, who do not fully trust each other or have conflicting interests. It is hard to coordinate them to provide end-to-end integrity protection of the DNN construction and application with classical security enhancement tools. For example, one party may share an incomplete data set with others, or contribute a modified sub DNN model to manipulate the aggregated model and affect the decision-making process. To mitigate this risk, we propose a novel blockchain based end-to-end integrity protection scheme for DNN applications integrated with an IoT system in the edge computing environment. The protection system leverages a set of cryptography primitives to build a blockchain adapted for edge computing that is scalable to handle a large number of IoT devices. The customized blockchain is integrated with a distributed/federated DNN to offer integrity and authenticity protection services.
2021-06-24
Połap, Dawid, Srivastava, Gautam, Jolfaei, Alireza, Parizi, Reza M..  2020.  Blockchain Technology and Neural Networks for the Internet of Medical Things. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :508–513.
In today's technological climate, users require fast automation and digitization of results for large amounts of data at record speeds. Especially in the field of medicine, where each patient is often asked to undergo many different examinations within one diagnosis or treatment. Each examination can help in the diagnosis or prediction of further disease progression. Furthermore, all produced data from these examinations must be stored somewhere and available to various medical practitioners for analysis who may be in geographically diverse locations. The current medical climate leans towards remote patient monitoring and AI-assisted diagnosis. To make this possible, medical data should ideally be secured and made accessible to many medical practitioners, which makes them prone to malicious entities. Medical information has inherent value to malicious entities due to its privacy-sensitive nature in a variety of ways. Furthermore, if access to data is distributively made available to AI algorithms (particularly neural networks) for further analysis/diagnosis, the danger to the data may increase (e.g., model poisoning with fake data introduction). In this paper, we propose a federated learning approach that uses decentralized learning with blockchain-based security and a proposition that accompanies that training intelligent systems using distributed and locally-stored data for the use of all patients. Our work in progress hopes to contribute to the latest trend of the Internet of Medical Things security and privacy.
2021-01-15
Korolev, D., Frolov, A., Babalova, I..  2020.  Classification of Websites Based on the Content and Features of Sites in Onion Space. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :1680—1683.
This paper describes a method for classifying onion sites. According to the results of the research, the most spread model of site in onion space is built. To create such a model, a specially trained neural network is used. The classification of neural network is based on five different categories such as using authentication system, corporate email, readable URL, feedback and type of onion-site. The statistics of the most spread types of websites in Dark Net are given.
2021-03-15
Brauckmann, A., Goens, A., Castrillon, J..  2020.  ComPy-Learn: A toolbox for exploring machine learning representations for compilers. 2020 Forum for Specification and Design Languages (FDL). :1–4.
Deep Learning methods have not only shown to improve software performance in compiler heuristics, but also e.g. to improve security in vulnerability prediction or to boost developer productivity in software engineering tools. A key to the success of such methods across these use cases is the expressiveness of the representation used to abstract from the program code. Recent work has shown that different such representations have unique advantages in terms of performance. However, determining the best-performing one for a given task is often not obvious and requires empirical evaluation. Therefore, we present ComPy-Learn, a toolbox for conveniently defining, extracting, and exploring representations of program code. With syntax-level language information from the Clang compiler frontend and low-level information from the LLVM compiler backend, the tool supports the construction of linear and graph representations and enables an efficient search for the best-performing representation and model for tasks on program code.
2021-09-07
Zhang, Xing, Cui, Xiaotong, Cheng, Kefei, Zhang, Liang.  2020.  A Convolutional Encoder Network for Intrusion Detection in Controller Area Networks. 2020 16th International Conference on Computational Intelligence and Security (CIS). :366–369.
Integrated with various electronic control units (ECUs), vehicles are becoming more intelligent with the assistance of essential connections. However, the interaction with the outside world raises great concerns on cyber-attacks. As a main standard for in-vehicle network, Controller Area Network (CAN) does not have any built-in security mechanisms to guarantee a secure communication. This increases risks of denial of service, remote control attacks by an attacker, posing serious threats to underlying vehicles, property and human lives. As a result, it is urgent to develop an effective in-vehicle network intrusion detection system (IDS) for better security. In this paper, we propose a Feature-based Sliding Window (FSW) to extract the feature of CAN Data Field and CAN IDs. Then we construct a convolutional encoder network (CEN) to detect network intrusion of CAN networks. The proposed FSW-CEN method is evaluated on real-world datasets. The experimental results show that compared to traditional data processing methods and convolutional neural networks, our method is able to detect attacks with a higher accuracy in terms of detection accuracy and false negative rate.
2021-09-16
Loonam, John, Zwiegelaar, Jeremy, Kumar, Vikas, Booth, Charles.  2020.  Cyber-Resiliency for Digital Enterprises: A Strategic Leadership Perspective. IEEE Transactions on Engineering Management. :1–14.
As organizations increasingly view information as one of their most valuable assets, which supports the creation and distribution of their products and services, information security will be an integral part of the design and operation of organizational business processes. Yet, risks associated with cyber-attacks are on the rise. Organizations that are subjected to attacks can suffer significant reputational damage as well as loss of information and knowledge. As a consequence, effective leadership is cited as a critical factor for ensuring corporate level attention for information security. However, there is a lack of empirical understanding as to the roles strategic leaders play in shaping and supporting the cyber-security strategy. This article seeks to address this gap in the literature by focusing on how senior leaders support the cyber-security strategy. The authors conducted a series of exploratory interviews with leaders in the positions of Chief Information Officer, Chief Security Information Officer, and Chief Technology Officer. The findings revealed that leaders are engaged in both transitional, where the focus is on improving governance and integration and transformational support, which involves fostering a new cultural mindset for cyber-resiliency and the development of an ecosystem approach to security thinking.
Conference Name: IEEE Transactions on Engineering Management
2021-04-08
Zhang, J., Liao, Y., Zhu, X., Wang, H., Ding, J..  2020.  A Deep Learning Approach in the Discrete Cosine Transform Domain to Median Filtering Forensics. IEEE Signal Processing Letters. 27:276—280.
This letter presents a novel median filtering forensics approach, based on a convolutional neural network (CNN) with an adaptive filtering layer (AFL), which is built in the discrete cosine transform (DCT) domain. Using the proposed AFL, the CNN can determine the main frequency range closely related with the operational traces. Then, to automatically learn the multi-scale manipulation features, a multi-scale convolutional block is developed, exploring a new multi-scale feature fusion strategy based on the maxout function. The resultant features are further processed by a convolutional stream with pooling and batch normalization operations, and finally fed into the classification layer with the Softmax function. Experimental results show that our proposed approach is able to accurately detect the median filtering manipulation and outperforms the state-of-the-art schemes, especially in the scenarios of low image resolution and serious compression loss.
2021-03-15
Toma, A., Krayani, A., Marcenaro, L., Gao, Y., Regazzoni, C. S..  2020.  Deep Learning for Spectrum Anomaly Detection in Cognitive mmWave Radios. 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications. :1–7.
Millimeter Wave (mmWave) band can be a solution to serve the vast number of Internet of Things (IoT) and Vehicle to Everything (V2X) devices. In this context, Cognitive Radio (CR) is capable of managing the mmWave spectrum sharing efficiently. However, Cognitive mmWave Radios are vulnerable to malicious users due to the complex dynamic radio environment and the shared access medium. This indicates the necessity to implement techniques able to detect precisely any anomalous behaviour in the spectrum to build secure and efficient radios. In this work, we propose a comparison framework between deep generative models: Conditional Generative Adversarial Network (C-GAN), Auxiliary Classifier Generative Adversarial Network (AC-GAN), and Variational Auto Encoder (VAE) used to detect anomalies inside the dynamic radio spectrum. For the sake of the evaluation, a real mmWave dataset is used, and results show that all of the models achieve high probability in detecting spectrum anomalies. Especially, AC-GAN that outperforms C-GAN and VAE in terms of accuracy and probability of detection.
2021-05-13
S, Naveen, Puzis, Rami, Angappan, Kumaresan.  2020.  Deep Learning for Threat Actor Attribution from Threat Reports. 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP). :1–6.
Threat Actor Attribution is the task of identifying an attacker responsible for an attack. This often requires expert analysis and involves a lot of time. There had been attempts to detect a threat actor using machine learning techniques that use information obtained from the analysis of malware samples. These techniques will only be able to identify the attack, and it is trivial to guess the attacker because various attackers may adopt an attack method. A state-of-the-art method performs attribution of threat actors from text reports using Machine Learning and NLP techniques using Threat Intelligence reports. We use the same set of Threat Reports of Advanced Persistent Threats (APT). In this paper, we propose a Deep Learning architecture to attribute Threat actors based on threat reports obtained from various Threat Intelligence sources. Our work uses Neural Networks to perform the task of attribution and show that our method makes the attribution more accurate than other techniques and state-of-the-art methods.
2021-03-29
Moti, Z., Hashemi, S., Jahromi, A. N..  2020.  A Deep Learning-based Malware Hunting Technique to Handle Imbalanced Data. 2020 17th International ISC Conference on Information Security and Cryptology (ISCISC). :48–53.
Nowadays, with the increasing use of computers and the Internet, more people are exposed to cyber-security dangers. According to antivirus companies, malware is one of the most common threats of using the Internet. Therefore, providing a practical solution is critical. Current methods use machine learning approaches to classify malware samples automatically. Despite the success of these approaches, the accuracy and efficiency of these techniques are still inadequate, especially for multiple class classification problems and imbalanced training data sets. To mitigate this problem, we use deep learning-based algorithms for classification and generation of new malware samples. Our model is based on the opcode sequences, which are given to the model without any pre-processing. Besides, we use a novel generative adversarial network to generate new opcode sequences for oversampling minority classes. Also, we propose the model that is a combination of Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM) to classify malware samples. CNN is used to consider short-term dependency between features; while, LSTM is used to consider longer-term dependence. The experiment results show our method could classify malware to their corresponding family effectively. Our model achieves 98.99% validation accuracy.
2021-02-10
Kascheev, S., Olenchikova, T..  2020.  The Detecting Cross-Site Scripting (XSS) Using Machine Learning Methods. 2020 Global Smart Industry Conference (GloSIC). :265—270.
This article discusses the problem of detecting cross-site scripting (XSS) using machine learning methods. XSS is an attack in which malicious code is embedded on a page to interact with an attacker’s web server. The XSS attack ranks third in the ranking of key web application risks according to Open Source Foundation for Application Security (OWASP). This attack has not been studied for a long time. It was considered harmless. However, this is fallacious: the page or HTTP Cookie may contain very vulnerable data, such as payment document numbers or the administrator session token. Machine learning is a tool that can be used to detect XSS attacks. This article describes an experiment. As a result the model for detecting XSS attacks was created. Following machine learning algorithms are considered: the support vector method, the decision tree, the Naive Bayes classifier, and Logistic Regression. The accuracy of the presented methods is made a comparison.
2021-05-18
Zheng, Wei, Gao, Jialiang, Wu, Xiaoxue, Xun, Yuxing, Liu, Guoliang, Chen, Xiang.  2020.  An Empirical Study of High-Impact Factors for Machine Learning-Based Vulnerability Detection. 2020 IEEE 2nd International Workshop on Intelligent Bug Fixing (IBF). :26–34.
Ahstract-Vulnerability detection is an important topic of software engineering. To improve the effectiveness and efficiency of vulnerability detection, many traditional machine learning-based and deep learning-based vulnerability detection methods have been proposed. However, the impact of different factors on vulnerability detection is unknown. For example, classification models and vectorization methods can directly affect the detection results and code replacement can affect the features of vulnerability detection. We conduct a comparative study to evaluate the impact of different classification algorithms, vectorization methods and user-defined variables and functions name replacement. In this paper, we collected three different vulnerability code datasets. These datasets correspond to different types of vulnerabilities and have different proportions of source code. Besides, we extract and analyze the features of vulnerability code datasets to explain some experimental results. Our findings from the experimental results can be summarized as follows: (i) the performance of using deep learning is better than using traditional machine learning and BLSTM can achieve the best performance. (ii) CountVectorizer can improve the performance of traditional machine learning. (iii) Different vulnerability types and different code sources will generate different features. We use the Random Forest algorithm to generate the features of vulnerability code datasets. These generated features include system-related functions, syntax keywords, and user-defined names. (iv) Datasets without user-defined variables and functions name replacement will achieve better vulnerability detection results.
2021-01-15
Nguyen, H. M., Derakhshani, R..  2020.  Eyebrow Recognition for Identifying Deepfake Videos. 2020 International Conference of the Biometrics Special Interest Group (BIOSIG). :1—5.
Deepfake imagery that contains altered faces has become a threat to online content. Current anti-deepfake approaches usually do so by detecting image anomalies, such as visible artifacts or inconsistencies. However, with deepfake advances, these visual artifacts are becoming harder to detect. In this paper, we show that one can use biometric eyebrow matching as a tool to detect manipulated faces. Our method could provide an 0.88 AUC and 20.7% EER for deepfake detection when applied to the highest quality deepfake dataset, Celeb-DF.
2021-05-13
Liu, Shuyong, Jiang, Hongrui, Li, Sizhao, Yang, Yang, Shen, Linshan.  2020.  A Feature Compression Technique for Anomaly Detection Using Convolutional Neural Networks. 2020 IEEE 14th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :39–42.
Anomaly detection classification technology based on deep learning is one of the crucial technologies supporting network security. However, as the data increasing, this traditional model cannot guarantee that the false alarm rate is minimized while meeting the high detection rate. Additionally, distribution of imbalanced abnormal samples will lead to an increase in the error rate of the classification results. In this work, since CNN is effective in network intrusion classification, we embed a compressed feature layer in CNN (Convolutional Neural Networks). The purpose is to improve the efficiency of network intrusion detection. After our model was trained for 55 epochs and we set the learning rate of the model to 0.01, the detection rate reaches over 98%.
2021-04-08
Mayer, O., Stamm, M. C..  2020.  Forensic Similarity for Digital Images. IEEE Transactions on Information Forensics and Security. 15:1331—1346.
In this paper, we introduce a new digital image forensics approach called forensic similarity, which determines whether two image patches contain the same forensic trace or different forensic traces. One benefit of this approach is that prior knowledge, e.g., training samples, of a forensic trace is not required to make a forensic similarity decision on it in the future. To do this, we propose a two-part deep-learning system composed of a convolutional neural network-based feature extractor and a three-layer neural network, called the similarity network. This system maps the pairs of image patches to a score indicating whether they contain the same or different forensic traces. We evaluated the system accuracy of determining whether two image patches were captured by the same or different camera model and manipulated by the same or a different editing operation and the same or a different manipulation parameter, given a particular editing operation. Experiments demonstrate applicability to a variety of forensic traces and importantly show efficacy on “unknown” forensic traces that were not used to train the system. Experiments also show that the proposed system significantly improves upon prior art, reducing error rates by more than half. Furthermore, we demonstrated the utility of the forensic similarity approach in two practical applications: forgery detection and localization, and database consistency verification.
2021-03-29
Li, J., Wang, X., Liu, S..  2020.  Hash Retrieval Method for Recaptured Images Based on Convolutional Neural Network. 2020 2nd World Symposium on Artificial Intelligence (WSAI). :79–83.
For the purpose of outdoor advertising market researching, AD images are recaptured and uploaded everyday for statistics. But the quality of the recaptured advertising images are often affected by conditions such as angle, distance, and light during the shooting process, which consequently reduce either the speed or the accuracy of the retrieving algorithm. In this paper, we proposed a hash retrieval method based on convolutional neural networks for recaptured images. The basic idea is to add a hash layer to the convolutional neural network and then extract the binary hash code output by the hash layer to perform image retrieval in lowdimensional Hamming space. Experimental results show that the retrieval performance is improved compared with the current commonly used hash retrieval methods.
2021-06-01
Cideron, Geoffrey, Seurin, Mathieu, Strub, Florian, Pietquin, Olivier.  2020.  HIGhER: Improving instruction following with Hindsight Generation for Experience Replay. 2020 IEEE Symposium Series on Computational Intelligence (SSCI). :225–232.
Language creates a compact representation of the world and allows the description of unlimited situations and objectives through compositionality. While these characterizations may foster instructing, conditioning or structuring interactive agent behavior, it remains an open-problem to correctly relate language understanding and reinforcement learning in even simple instruction following scenarios. This joint learning problem is alleviated through expert demonstrations, auxiliary losses, or neural inductive biases. In this paper, we propose an orthogonal approach called Hindsight Generation for Experience Replay (HIGhER) that extends the Hindsight Experience Replay approach to the language-conditioned policy setting. Whenever the agent does not fulfill its instruction, HIGhER learns to output a new directive that matches the agent trajectory, and it relabels the episode with a positive reward. To do so, HIGhER learns to map a state into an instruction by using past successful trajectories, which removes the need to have external expert interventions to relabel episodes as in vanilla HER. We show the efficiency of our approach in the BabyAI environment, and demonstrate how it complements other instruction following methods.
2021-02-23
Chen, W., Cao, H., Lv, X., Cao, Y..  2020.  A Hybrid Feature Extraction Network for Intrusion Detection Based on Global Attention Mechanism. 2020 International Conference on Computer Information and Big Data Applications (CIBDA). :481—485.
The widespread application of 5G will make intrusion detection of large-scale network traffic a mere need. However, traditional intrusion detection cannot meet the requirements by manually extracting features, and the existing AI methods are also relatively inefficient. Therefore, when performing intrusion detection tasks, they have significant disadvantages of high false alarm rates and low recognition performance. For this challenge, this paper proposes a novel hybrid network, RULA-IDS, which can perform intrusion detection tasks by great amount statistical data from the network monitoring system. RULA-IDS consists of the fully connected layer, the feature extraction layer, the global attention mechanism layer and the SVM classification layer. In the feature extraction layer, the residual U-Net and LSTM are used to extract the spatial and temporal features of the network traffic attributes. It is worth noting that we modified the structure of U-Net to suit the intrusion detection task. The global attention mechanism layer is then used to selectively retain important information from a large number of features and focus on those. Finally, the SVM is used as a classifier to output results. The experimental results show that our method outperforms existing state-of-the-art intrusion detection methods, and the accuracies of training and testing are improved to 97.01% and 98.19%, respectively, and presents stronger robustness during training and testing.
2020-12-14
Efendioglu, H. S., Asik, U., Karadeniz, C..  2020.  Identification of Computer Displays Through Their Electromagnetic Emissions Using Support Vector Machines. 2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA). :1–5.
As a TEMPEST information security problem, electromagnetic emissions from the computer displays can be captured, and reconstructed using signal processing techniques. It is necessary to identify the display type to intercept the image of the display. To determine the display type not only significant for attackers but also for protectors to prevent display compromising emanations. This study relates to the identification of the display type using Support Vector Machines (SVM) from electromagnetic emissions emitted from computer displays. After measuring the emissions using receiver measurement system, the signals were processed and training/test data sets were formed and the classification performance of the displays was examined with the SVM. Moreover, solutions for a better classification under real conditions have been proposed. Thus, one of the important step of the display image capture can accomplished by automatically identification the display types. The performance of the proposed method was evaluated in terms of confusion matrix and accuracy, precision, F1-score, recall performance measures.