Biblio

Found 835 results

Filters: Keyword is Internet  [Clear All Filters]
2021-04-08
Nakamura, R., Kamiyama, N..  2020.  Analysis of Content Availability at Network Failure in Information-Centric Networking. 2020 16th International Conference on Network and Service Management (CNSM). :1–7.
In recent years, ICN (Information-Centric Networking) has been under the spotlight as a network that mainly focuses on transmitted and received data rather than on the hosts that transmit and receive data. Generally, the communication networks such as ICNs are required to be robust against network failures caused by attacks and disasters. One of the metrics for the robustness of conventional host-centric networks, e.g., TCP/IP network, is reachability between nodes in the network after network failures, whereas the key metric for the robustness of ICNs is content availability. In this paper, we focus on an arbitrary ICN network and derive the content availability for a given probability of node removal. Especially, we analytically obtain the average content availability over an entire network in the case where just a single path from a node to a repository, i.e., contents server, storing contents is available and where multiple paths to the repository are available, respectively. Furthermore, through several numerical evaluations, we investigate the effect of the structure of network topology as well as the pattern and scale of the network failures on the content availability in ICN. Our findings include that, regardless of patterns of network failures, the content availability is significantly improved by caching contents at routers and using multiple paths, and that the content availability is more degraded at cluster-based node removal compared with random node removal.
2021-02-10
Tanana, D..  2020.  Behavior-Based Detection of Cryptojacking Malware. 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :0543—0545.
With rise of cryptocurrency popularity and value, more and more cybercriminals seek to profit using that new technology. Most common ways to obtain illegitimate profit using cryptocurrencies are ransomware and cryptojacking also known as malicious mining. And while ransomware is well-known and well-studied threat which is obvious by design, cryptojacking is often neglected because it's less harmful and much harder to detect. This article considers question of cryptojacking detection. Brief history and definition of cryptojacking are described as well as reasons for designing custom detection technique. We also propose complex detection technique based on CPU load by an application, which can be applied to both browser-based and executable-type cryptojacking samples. Prototype detection program based on our technique was designed using decision tree algorithm. The program was tested in a controlled virtual machine environment and achieved 82% success rate against selected number of cryptojacking samples. Finally, we'll discuss generalization of proposed technique for future work.
2021-04-27
Hammoud, O. R., Tarkhanov, I. A..  2020.  Blockchain-based open infrastructure for URL filtering in an Internet browser. 2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT). :1—4.
This research is dedicated to the development of a prototype of open infrastructure for users’ internet traffic filtering on a browser level. We described the advantages of a distributed approach in comparison with current centralized solutions. Besides, we suggested a solution to define the optimum size for a URL storage block in Ethereum network. This solution may be used for the development of infrastructure of DApps applications on Ethereum network in future. The efficiency of the suggested approach is supported by several experiments.
2021-01-15
Korolev, D., Frolov, A., Babalova, I..  2020.  Classification of Websites Based on the Content and Features of Sites in Onion Space. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :1680—1683.
This paper describes a method for classifying onion sites. According to the results of the research, the most spread model of site in onion space is built. To create such a model, a specially trained neural network is used. The classification of neural network is based on five different categories such as using authentication system, corporate email, readable URL, feedback and type of onion-site. The statistics of the most spread types of websites in Dark Net are given.
2021-02-10
Mishra, P., Gupta, C..  2020.  Cookies in a Cross-site scripting: Type, Utilization, Detection, Protection and Remediation. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1056—1059.
In accordance to the annual report by the Cisco 2018, web applications are exposed to several security vulnerabilities that are exploited by hackers in various ways. It is becoming more and more frequent, specific and sophisticated. Of all the vulnerabilities, more than 40% of attempts are performed via cross-site scripting (XSS). A number of methods have been postulated to examine such vulnerabilities. Therefore, this paper attempted to address an overview of one such vulnerability: the cookies in the XSS. The objective is to present an overview of the cookies, it's type, vulnerability, policies, discovering, protecting and their mitigation via different tools/methods and via cryptography, artificial intelligence techniques etc. While some future issues, directions, challenges and future research challenges were also being discussed.
Varlioglu, S., Gonen, B., Ozer, M., Bastug, M..  2020.  Is Cryptojacking Dead After Coinhive Shutdown? 2020 3rd International Conference on Information and Computer Technologies (ICICT). :385—389.
Cryptojacking is the exploitation of victims' computer resources to mine for cryptocurrency using malicious scripts. It had become popular after 2017 when attackers started to exploit legal mining scripts, especially Coinhive scripts. Coinhive was actually a legal mining service that provided scripts and servers for in-browser mining activities. Nevertheless, over 10 million web users had been victims every month before the Coinhive shutdown that happened in Mar 2019. This paper explores the new era of the cryptojacking world after Coinhive discontinued its service. We aimed to see whether and how attackers continue cryptojacking, generate new malicious scripts, and developed new methods. We used a capable cryptojacking detector named CMTracker that proposed by Hong et al. in 2018. We automatically and manually examined 2770 websites that had been detected by CMTracker before the Coinhive shutdown. The results revealed that 99% of sites no longer continue cryptojacking. 1% of websites still run 8 unique mining scripts. By tracking these mining scripts, we detected 632 unique cryptojacking websites. Moreover, open-source investigations (OSINT) demonstrated that attackers still use the same methods. Therefore, we listed the typical patterns of cryptojacking. We concluded that cryptojacking is not dead after the Coinhive shutdown. It is still alive, but not as attractive as it used to be.
2021-06-24
Hastings, John C., Laverty, David M., Jahic, Admir, Morrow, D John, Brogan, Paul.  2020.  Cyber-security considerations for domestic-level automated demand-response systems utilizing public-key infrastructure and ISO/IEC 20922. 2020 31st Irish Signals and Systems Conference (ISSC). :1–6.
In this paper, the Authors present MQTT (ISO/IEC 20922), coupled with Public-key Infrastructure (PKI) as being highly suited to the secure and timely delivery of the command and control messages required in a low-latency Automated Demand Response (ADR) system which makes use of domestic-level electrical loads connected to the Internet. Several use cases for ADR are introduced, and relevant security considerations are discussed; further emphasizing the suitability of the proposed infrastructure. The authors then describe their testbed platform for testing ADR functionality, and finally discuss the next steps towards getting these kinds of technologies to the next stage.
2021-03-29
Moti, Z., Hashemi, S., Jahromi, A. N..  2020.  A Deep Learning-based Malware Hunting Technique to Handle Imbalanced Data. 2020 17th International ISC Conference on Information Security and Cryptology (ISCISC). :48–53.
Nowadays, with the increasing use of computers and the Internet, more people are exposed to cyber-security dangers. According to antivirus companies, malware is one of the most common threats of using the Internet. Therefore, providing a practical solution is critical. Current methods use machine learning approaches to classify malware samples automatically. Despite the success of these approaches, the accuracy and efficiency of these techniques are still inadequate, especially for multiple class classification problems and imbalanced training data sets. To mitigate this problem, we use deep learning-based algorithms for classification and generation of new malware samples. Our model is based on the opcode sequences, which are given to the model without any pre-processing. Besides, we use a novel generative adversarial network to generate new opcode sequences for oversampling minority classes. Also, we propose the model that is a combination of Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM) to classify malware samples. CNN is used to consider short-term dependency between features; while, LSTM is used to consider longer-term dependence. The experiment results show our method could classify malware to their corresponding family effectively. Our model achieves 98.99% validation accuracy.
2020-12-21
Ayers, H., Crews, P., Teo, H., McAvity, C., Levy, A., Levis, P..  2020.  Design Considerations for Low Power Internet Protocols. 2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS). :103–111.
Low-power wireless networks provide IPv6 connectivity through 6LoWPAN, a set of standards to aggressively compress IPv6 packets over small maximum transfer unit (MTU) links such as 802.15.4.The entire purpose of IP was to interconnect different networks, but we find that different 6LoWPAN implementations fail to reliably communicate with one another. These failures are due to stacks implementing different subsets of the standard out of concern for code size. We argue that this failure stems from 6LoWPAN's design, not implementation, and is due to applying traditional Internet protocol design principles to low- power networks.We propose three design principles for Internet protocols on low-power networks, designed to prevent similar failures in the future. These principles are based around the importance of providing flexible tradeoffs between code size and energy efficiency. We apply these principles to 6LoWPAN and show that the modified protocol provides a wide range of implementation strategies while allowing implementations with different strategies to reliably communicate.
2021-04-08
Lin, X., Zhang, Z., Chen, M., Sun, Y., Li, Y., Liu, M., Wang, Y., Liu, M..  2020.  GDGCA: A Gene Driven Cache Scheduling Algorithm in Information-Centric Network. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). :167–172.
The disadvantages and inextensibility of the traditional network require more novel thoughts for the future network architecture, as for ICN (Information-Centric Network), is an information centered and self-caching network, ICN is deeply rooted in the 5G era, of which concept is user-centered and content-centered. Although the ICN enables cache replacement of content, an information distribution scheduling algorithm is still needed to allocate resources properly due to its limited cache capacity. This paper starts with data popularity, information epilepsy and other data related attributes in the ICN environment. Then it analyzes the factors affecting the cache, proposes the concept and calculation method of Gene value. Since the ICN is still in a theoretical state, this paper describes an ICN scenario that is close to the reality and processes a greedy caching algorithm named GDGCA (Gene Driven Greedy Caching Algorithm). The GDGCA tries to design an optimal simulation model, which based on the thoughts of throughput balance and satisfaction degree (SSD), then compares with the regular distributed scheduling algorithm in related research fields, such as the QoE indexes and satisfaction degree under different Poisson data volumes and cycles, the final simulation results prove that GDGCA has better performance in cache scheduling of ICN edge router, especially with the aid of Information Gene value.
2021-08-11
Brooks, Richard, Wang, Kuang-Ching, Oakley, Jon, Tusing, Nathan.  2020.  Global Internet Traffic Routing and Privacy. 2020 International Scientific and Technical Conference Modern Computer Network Technologies (MoNeTeC). :1—7.
Current Internet Protocol routing provides minimal privacy, which enables multiple exploits. The main issue is that the source and destination addresses of all packets appear in plain text. This enables numerous attacks, including surveillance, man-in-the-middle (MITM), and denial of service (DoS). The talk explains how these attacks work in the current network. Endpoints often believe that use of Network Address Translation (NAT), and Dynamic Host Configuration Protocol (DHCP) can minimize the loss of privacy.We will explain how the regularity of human behavior can be used to overcome these countermeasures. Once packets leave the local autonomous system (AS), they are routed through the network by the Border Gateway Protocol (BGP). The talk will discuss the unreliability of BGP and current attacks on the routing protocol. This will include an introduction to BGP injects and the PEERING testbed for BGP experimentation. One experiment we have performed uses statistical methods (CUSUM and F-test) to detect BGP injection events. We describe work we performed that applies BGP injects to Internet Protocol (IP) address randomization to replace fixed IP addresses in headers with randomized addresses. We explain the similarities and differences of this approach with virtual private networks (VPNs). Analysis of this work shows that BGP reliance on autonomous system (AS) numbers removes privacy from the concept, even though it would disable the current generation of MITM and DoS attacks. We end by presenting a compromise approach that creates software-defined data exchanges (SDX), which mix traffic randomization with VPN concepts. We contrast this approach with the Tor overlay network and provide some performance data.
2021-01-11
Papadogiannaki, E., Deyannis, D., Ioannidis, S..  2020.  Head(er)Hunter: Fast Intrusion Detection using Packet Metadata Signatures. 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1–6.
More than 75% of the Internet traffic is now encrypted, while this percentage is constantly increasing. The majority of communications are secured using common encryption protocols such as SSL/TLS and IPsec to ensure security and protect the privacy of Internet users. Yet, encryption can be exploited to hide malicious activities. Traditionally, network traffic inspection is based on techniques like deep packet inspection (DPI). Common applications for DPI include but are not limited to firewalls, intrusion detection and prevention systems, L7 filtering and packet forwarding. The core functionality of such DPI implementations is based on pattern matching that enables searching for specific strings or regular expressions inside the packet contents. With the widespread adoption of network encryption though, DPI tools that rely on packet payload content are becoming less effective, demanding the development of more sophisticated techniques in order to adapt to current network encryption trends. In this work, we present HeaderHunter, a fast signature-based intrusion detection system even in encrypted network traffic. We generate signatures using only network packet metadata extracted from packet headers. Also, to cope with the ever increasing network speeds, we accelerate the inner computations of our proposed system using off-the-shelf GPUs.
2021-02-22
Yan, Z., Park, Y., Leau, Y., Ren-Ting, L., Hassan, R..  2020.  Hybrid Network Mobility Support in Named Data Networking. 2020 International Conference on Information Networking (ICOIN). :16–19.
Named Data Networking (NDN) is a promising Internet architecture which is expected to solve some problems (e.g., security, mobility) of the current TCP/IP architecture. The basic concept of NDN is to use named data for routing instead of using location addresses like IP address. NDN natively supports consumer mobility, but producer mobility is still a challenge and there have been quite a few researches. Considering the Internet connection such as public transport vehicles, network mobility support in NDN is important, but it is still a challenge. That is the reason that this paper proposes an efficient network mobility support scheme in NDN in terms of signaling protocols and data retrieval.
2021-03-15
Nieto-Chaupis, H..  2020.  Hyper Secure Cognitive Radio Communications in an Internet of Space Things Network Based on the BB84 Protocol. 2020 Intermountain Engineering, Technology and Computing (IETC). :1–5.
Once constellation of satellites are working in a collaborative manner, the security of their messages would have to be highly secure from all angles of scenarios by which the praxis of eavesdropping constitutes a constant thread for the instability of the different tasks and missions. In this paper we employ the Bennet-Brassard commonly known as the BB84 protocol in conjunction to the technique of Cognitive Radio applied to the Internet of Space Things to build a prospective technology to guarantee the communications among geocentric orbital satellites. The simulations have yielded that for a constellation of 5 satellites, the probability of successful of completion the communication might be of order of 75% ±5%.
2021-04-08
Deng, L., Luo, J., Zhou, J., Wang, J..  2020.  Identity-based Secret Sharing Access Control Framework for Information-Centric Networking. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :507–511.
Information-centric networking (ICN) has played an increasingly important role in the next generation network design. However, to make better use of request-response communication mode in the ICN network, revoke user privileges more efficiently and protect user privacy more safely, an effective access control mechanism is needed. In this paper, we propose IBSS (identity-based secret sharing), which achieves efficient content distribution by using improved Shamir's secret sharing method. At the same time, collusion attacks are avoided by associating polynomials' degree with the number of users. When authenticating user identity and transmitting content, IBE and IBS are introduced to achieve more efficient and secure identity encryption. From the experimental results, the scheme only introduces an acceptable delay in file retrieval, and it can request follow-up content very efficiently.
Dinh, N., Tran, M., Park, Y., Kim, Y..  2020.  An Information-centric NFV-based System Implementation for Disaster Management Services. 2020 International Conference on Information Networking (ICOIN). :807–810.
When disasters occur, they not only affect the human life. Therefore, communication in disaster management is very important. During the disaster recovery phase, the network infrastructure may be partially fragmented and mobile rescue operations may involve many teams with different roles which can dynamically change. Therefore, disaster management services require high flexibility both in terms of network infrastructure management and rescue group communication. Existing studies have shown that IP-based or traditional telephony solutions are not well-suited to deal with such flexible group communication and network management due to their connection-oriented communication, no built-in support for mobile devices, and no mechanism for network fragmentation. Recent studies show that information-centric networking offers scalable and flexible communication based on its name-based interest-oriented communication approach. However, considering the difficulty of deploying a new service on the existing network, the programmability and virtualization of the network are required. This paper presents our implementation of an information-centric disaster management system based on network function virtualization (vICSNF). We show a proof-of-concept system with a case study for Seoul disaster management services. The system achieves flexibility both in terms of network infrastructure management and rescue group communication. Obtained testbed results show that vICSNF achieves a low communication overhead compared to the IP-based approach and the auto-configuration of vICSNFs enables the quick deployment for disaster management services in disaster scenarios.
2021-01-11
Malik, A., Fréin, R. de, Al-Zeyadi, M., Andreu-Perez, J..  2020.  Intelligent SDN Traffic Classification Using Deep Learning: Deep-SDN. 2020 2nd International Conference on Computer Communication and the Internet (ICCCI). :184–189.
Accurate traffic classification is fundamentally important for various network activities such as fine-grained network management and resource utilisation. Port-based approaches, deep packet inspection and machine learning are widely used techniques to classify and analyze network traffic flows. However, over the past several years, the growth of Internet traffic has been explosive due to the greatly increased number of Internet users. Therefore, both port-based and deep packet inspection approaches have become inefficient due to the exponential growth of the Internet applications that incurs high computational cost. The emerging paradigm of software-defined networking has reshaped the network architecture by detaching the control plane from the data plane to result in a centralised network controller that maintains a global view over the whole network on its domain. In this paper, we propose a new deep learning model for software-defined networks that can accurately identify a wide range of traffic applications in a short time, called Deep-SDN. The performance of the proposed model was compared against the state-of-the-art and better results were reported in terms of accuracy, precision, recall, and f-measure. It has been found that 96% as an overall accuracy can be achieved with the proposed model. Based on the obtained results, some further directions are suggested towards achieving further advances in this research area.
2020-12-14
Kavitha, R., Malathi, K., Kunjachen, L. M..  2020.  Interference of Cyber Endanger using Support Vector Machine. 2020 International Conference on Computer Communication and Informatics (ICCCI). :1–4.
The wonder of cyberbullying, implied as persistent and repeated mischief caused through the use of PC systems, mobile phones, and noteworthy propelled contraptions. for instance, Hinduja and Patching upheld that 10-forty% of outlined children masses surrendered having dealt with it each as a harmed individual or as a with the guide of the use of-stander wherein additional progressively young individuals use development to issue, undermine, embarrass, or by and large burden their mates. Advanced badgering has starting at now been said as one which reason first rate harm to society and monetary machine. Advances in development related with web record remark and the assortment of the web associations renders the area and following of such models as a credibility hard and extremely problematic. This paper portrays a web structure for robotized revelation and seeing of Cyber-tormenting cases from on-line exchanges and on line associations. The device is mainly assembled completely absolutely as for the revelation of 3 basic ordinary language sections like Insults, Swears and 2d person. A sort machine and cosmology like reasoning had been contracted to go over the normality of such substances inside the trade board/web documents, which may conceivable explanation a message to security in case you have to take fitting improvement. The instrument has been dissected on staggering social occasions and achieves less steeply-esteemed acknowledgment displays.
2021-02-16
Lotfalizadeh, H., Kim, D. S..  2020.  Investigating Real-Time Entropy Features of DDoS Attack Based on Categorized Partial-Flows. 2020 14th International Conference on Ubiquitous Information Management and Communication (IMCOM). :1—6.
With the advent of IoT devices and exponential growth of nodes on the internet, computer networks are facing new challenges, with one of the more important ones being DDoS attacks. In this paper, new features to detect initiation and termination of DDoS attacks are investigated. The method to extract these features is devised with respect to some openflowbased switch capabilities. These features provide us with a higher resolution to view and process packet count entropies, thus improving DDoS attack detection capabilities. Although some of the technical assumptions are based on SDN technology and openflow protocol, the methodology can be applied in other networking paradigms as well.
2021-05-03
Wu, Shanglun, Yuan, Yujie, Kar, Pushpendu.  2020.  Lightweight Verification and Fine-grained Access Control in Named Data Networking Based on Schnorr Signature and Hash Functions. 2020 IEEE 20th International Conference on Communication Technology (ICCT). :1561–1566.
Named Data Networking (NDN) is a new kind of architecture for future Internet, which is exactly satisfied with the rapidly increasing mobile requirement and information-depended applications that dominate today's Internet. However, the current verification-data accessed system is not safe enough to prevent data leakage because no strongly method to resist any device or user to access it. We bring up a lightweight verification based on hash functions and a fine-grained access control based on Schnorr Signature to address the issue seamlessly. The proposed scheme is scalable and protect data confidentiality in a NDN network.
2021-02-22
Afanasyev, A., Ramani, S. K..  2020.  NDNconf: Network Management Framework for Named Data Networking. 2020 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
The rapid growth of the Internet is, in part, powered by the broad participation of numerous vendors building network components. All these network devices require that they be properly configured and maintained, which creates a challenge for system administrators of complex networks with a growing variety of heterogeneous devices. This challenge is true for today's networks, as well as for the networking architectures of the future, such as Named Data Networking (NDN). This paper gives a preliminary design of an NDNconf framework, an adaptation of a recently developed NETCONF protocol, to realize unified configuration and management for NDN. The presented design is built leveraging the benefits provided by NDN, including the structured naming shared among network and application layers, stateful data retrieval with name-based interest forwarding, in-network caching, data-centric security model, and others. Specifically, the configuration data models, the heart of NDNconf, the elements of the models and models themselves are represented as secured NDN data, allowing fetching models, fetching configuration data that correspond to elements of the model, and issuing commands using the standard Interest-Data exchanges. On top of that, the security of models, data, and commands are realized through native data-centric NDN mechanisms, providing highly secure systems with high granularity of control.
2021-05-03
Marechal, Emeline, Donnet, Benoit.  2020.  Network Fingerprinting: Routers under Attack. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :594–599.
Nowadays, simple tools such as traceroute can be used by attackers to acquire topology knowledge remotely. Worse still, attackers can use a lightweight fingerprinting technique, based on traceroute and ping, to retrieve the routers brand, and use that knowledge to launch targeted attacks. In this paper, we show that the hardware ecosystem of network operators can greatly vary from one to another, with all potential security implications it brings. Indeed, depending on the autonomous system (AS), not all brands play the same role in terms of network connectivity. An attacker could find an interest in targeting a specific hardware vendor in a particular AS, if known defects are present in this hardware, and if the AS relies heavily on it for forwarding its traffic.
2021-01-11
Bahaa, M., Aboulmagd, A., Adel, K., Fawzy, H., Abdelbaki, N..  2020.  nnDPI: A Novel Deep Packet Inspection Technique Using Word Embedding, Convolutional and Recurrent Neural Networks. 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES). :165–170.
Traffic Characterization, Application Identification, Per Application Classification, and VPN/Non-VPN Traffic Characterization have been some of the most notable research topics over the past few years. Deep Packet Inspection (DPI) promises an increase in Quality of Service (QoS) for Internet Service Providers (ISPs), simplifies network management and plays a vital role in content censoring. DPI has been used to help ease the flow of network traffic. For instance, if there is a high priority message, DPI could be used to enable high-priority information to pass through immediately, ahead of other lower priority messages. It can be used to prioritize packets that are mission-critical, ahead of ordinary browsing packets. Throttling or slowing down the rate of data transfer can be achieved using DPI for certain traffic types like peer-to-peer downloads. It can also be used to enhance the capabilities of ISPs to prevent the exploitation of Internet of Things (IoT) devices in Distributed Denial-Of-Service (DDOS) attacks by blocking malicious requests from devices. In this paper, we introduce a novel architecture for DPI using neural networks utilizing layers of word embedding, convolutional neural networks and bidirectional recurrent neural networks which proved to have promising results in this task. The proposed architecture introduces a new mix of layers which outperforms the proposed approaches before.
2021-02-22
Alzakari, N., Dris, A. B., Alahmadi, S..  2020.  Randomized Least Frequently Used Cache Replacement Strategy for Named Data Networking. 2020 3rd International Conference on Computer Applications Information Security (ICCAIS). :1–6.
To accommodate the rapidly changing Internet requirements, Information-Centric Networking (ICN) was recently introduced as a promising architecture for the future Internet. One of the ICN primary features is `in-network caching'; due to its ability to minimize network traffic and respond faster to users' requests. Therefore, various caching algorithms have been presented that aim to enhance the network performance using different measures, such as cache hit ratio and cache hit distance. Choosing a caching strategy is critical, and an adequate replacement strategy is also required to decide which content should be dropped. Thus, in this paper, we propose a content replacement scheme for ICN, called Randomized LFU that is implemented with respect to content popularity taking the time complexity into account. We use Abilene and Tree network topologies in our simulation models. The proposed replacement achieves encouraging results in terms of the cache hit ratio, inner hit, and hit distance and it outperforms FIFO, LRU, and Random replacement strategies.
2021-03-01
Khoukhi, L., Khatoun, R..  2020.  Safe Traffic Adaptation Model in Wireless Mesh Networks. 2020 4th Cyber Security in Networking Conference (CSNet). :1–4.
Wireless mesh networks (WMNs) are dynamically self-organized and self-configured technology ensuring efficient connection to Internet. Such networks suffer from many issues, like lack of performance efficiency when huge amount of traffic are injected inside the networks. To deal with such issues, we propose in this paper an adapted fuzzy framework; by monitoring the rate of change in queue length in addition to the current length of the queue, we are able to provide a measure of future queue state. Furthermore, by using explicit rate messages we can make node sources more responsive to unexpected changes in the network traffic load. The simulation results show the efficiency of the proposed model.