Biblio

Filters: Keyword is Health Care  [Clear All Filters]
2021-02-08
Mathur, G., Pandey, A., Goyal, S..  2020.  Immutable DNA Sequence Data Transmission for Next Generation Bioinformatics Using Blockchain Technology. 2nd International Conference on Data, Engineering and Applications (IDEA). :1–6.
In recent years, there is fast growth in the high throughput DNA sequencing technology, and also there is a reduction in the cost of genome-sequencing, that has led to a advances in the genetic industries. However, the reduction in cost and time required for DNA sequencing there is still an issue of managing such large amount of data. Also, the security and transmission of such huge amount of DNA sequence data is still an issue. The idea is to provide a secure storage platform for future generation bioinformatics systems for both researchers and healthcare user. Secure data sharing strategies, that can permit the healthcare providers along with their secured substances for verifying the accuracy of data, are crucial for ensuring proper medical services. In this paper, it has been surveyed about the applications of blockchain technology for securing healthcare data, where the recorded information is encrypted so that it becomes difficult to penetrate or being removed, as the primary goals of block-chaining technology is to make data immutable.
2020-12-28
Zhang, C., Shahriar, H., Riad, A. B. M. K..  2020.  Security and Privacy Analysis of Wearable Health Device. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :1767—1772.

Mobile wearable health devices have expanded prevalent usage and become very popular because of the valuable health monitor system. These devices provide general health tips and monitoring human health parameters as well as generally assisting the user to take better health of themselves. However, these devices are associated with security and privacy risk among the consumers because these devices deal with sensitive data information such as users sleeping arrangements, dieting formula such as eating constraint, pulse rate and so on. In this paper, we analyze the significant security and privacy features of three very popular health tracker devices: Fitbit, Jawbone and Google Glass. We very carefully analyze the devices' strength and how the devices communicate and its Bluetooth pairing process with mobile devices. We explore the possible malicious attack through Bluetooth networking by hacker. The outcomes of this analysis show how these devices allow third parties to gain sensitive information from the device exact location that causes the potential privacy breach for users. We analyze the reasons of user data security and privacy are gained by unauthorized people on wearable devices and the possible challenge to secure user data as well as the comparison of three wearable devices (Fitbit, Jawbone and Google Glass) security vulnerability and attack type.

2021-02-23
Liu, W., Park, E. K., Krieger, U., Zhu, S. S..  2020.  Smart e-Health Security and Safety Monitoring with Machine Learning Services. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1—6.

This research provides security and safety extensions to a blockchain based solution whose target is e-health. The Advanced Blockchain platform is extended with intelligent monitoring for security and machine learning for detecting patient treatment medication safety issues. For the reasons of stringent HIPAA, HITECH, EU-GDPR and other regional regulations dictating security, safety and privacy requirements, the e-Health blockchains have to cover mandatory disclosure of violations or enforcements of policies during transaction flows involving healthcare. Our service solution further provides the benefits of resolving the abnormal flows of a medical treatment process, providing accountability of the service providers, enabling a trust health information environment for institutions to handle medication safely, giving patients a better safety guarantee, and enabling the authorities to supervise the security and safety of e-Health blockchains. The capabilities can be generalized to support a uniform smart solution across industry in a variety of blockchain applications.

2021-03-29
Juyal, S., Sharma, S., Harbola, A., Shukla, A. S..  2020.  Privacy and Security of IoT based Skin Monitoring System using Blockchain Approach. 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). :1—5.

Remote patient monitoring is a system that focuses on patients care and attention with the advent of the Internet of Things (IoT). The technology makes it easier to track distance, but also to diagnose and provide critical attention and service on demand so that billions of people are safer and more safe. Skincare monitoring is one of the growing fields of medical care which requires IoT monitoring, because there is an increasing number of patients, but cures are restricted to the number of available dermatologists. The IoT-based skin monitoring system produces and store volumes of private medical data at the cloud from which the skin experts can access it at remote locations. Such large-scale data are highly vulnerable and otherwise have catastrophic results for privacy and security mechanisms. Medical organizations currently do not concentrate much on maintaining safety and privacy, which are of major importance in the field. This paper provides an IoT based skin surveillance system based on a blockchain data protection and safety mechanism. A secure data transmission mechanism for IoT devices used in a distributed architecture is proposed. Privacy is assured through a unique key to identify each user when he registers. The principle of blockchain also addresses security issues through the generation of hash functions on every transaction variable. We use blockchain consortiums that meet our criteria in a decentralized environment for controlled access. The solutions proposed allow IoT based skin surveillance systems to privately and securely store and share medical data over the network without disturbance.

2021-01-28
Sammoud, A., Chalouf, M. A., Hamdi, O., Montavont, N., Bouallegue, A..  2020.  A secure three-factor authentication and biometrics-based key agreement scheme for TMIS with user anonymity. 2020 International Wireless Communications and Mobile Computing (IWCMC). :1916—1921.

E- Health systems, specifically, Telecare Medical Information Systems (TMIS), are deployed in order to provide patients with specific diseases with healthcare services that are usually based on remote monitoring. Therefore, making an efficient, convenient and secure connection between users and medical servers over insecure channels within medical services is a rather major issue. In this context, because of the biometrics' characteristics, many biometrics-based three factor user authentication schemes have been proposed in the literature to secure user/server communication within medical services. In this paper, we make a brief study of the most interesting proposals. Then, we propose a new three-factor authentication and key agreement scheme for TMIS. Our scheme tends not only to fix the security drawbacks of some studied related work, but also, offers additional significant features while minimizing resource consumption. In addition, we perform a formal verification using the widely accepted formal security verification tool AVISPA to demonstrate that our proposed scheme is secure. Also, our comparative performance analysis reveals that our proposed scheme provides a lower resource consumption compared to other related work's proposals.

2020-11-09
Farhadi, M., Haddad, H., Shahriar, H..  2019.  Compliance Checking of Open Source EHR Applications for HIPAA and ONC Security and Privacy Requirements. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:704–713.
Electronic Health Record (EHR) applications are digital versions of paper-based patient's health information. They are increasingly adopted to improved quality in healthcare, such as convenient access to histories of patient medication and clinic visits, easier follow up of patient treatment plans, and precise medical decision-making process. EHR applications are guided by measures of the Health Insurance Portability and Accountability Act (HIPAA) to ensure confidentiality, integrity, and availability. Furthermore, Office of the National Coordinator (ONC) for Health Information Technology (HIT) certification criteria for usability of EHRs. A compliance checking approach attempts to identify whether or not an adopted EHR application meets the security and privacy criteria. There is no study in the literature to understand whether traditional static code analysis-based vulnerability discovered can assist in compliance checking of regulatory requirements of HIPAA and ONC. This paper attempts to address this issue. We identify security and privacy requirements for HIPAA technical requirements, and identify a subset of ONC criteria related to security and privacy, and then evaluate EHR applications for security vulnerabilities. Finally propose mitigation of security issues towards better compliance and to help practitioners reuse open source tools towards certification compliance.
2020-04-13
Avianto, Hana, Ogi, Dion.  2019.  Design of Electronic Medical Record Security Policy in Hospital Management Information System (SIMRS) in XYZ Hospital. 2019 2nd International Conference on Applied Information Technology and Innovation (ICAITI). :163–167.
Electronic Medical Record (EMR) is a medical record management system. EMR contains personal data of patients that is critical. The critical nature of medical records is the reason for the necessity to develop security policies as guidelines for EMR in SIMRS in XZY Hospital. In this study, analysis and risk assessment conducted to EMR management at SIMRS in XZY Hospital. Based on this study, the security of SIMRS in XZY Hospital is categorized as high. Security and Privacy Control mapping based on NIST SP800-53 rev 5 obtained 57 security controls related to privacy aspects as control options to protect EMR in SIMRS in XZY Hospital. The policy designing was done using The Triangle framework for Policy Analysis. The analysis obtained from the policy decisions of the head of XYZ Hospital. The contents of the security policy are provisions on the implementation of security policies of EMR, outlined of 17 controls were selected.
2020-10-12
MacMahon, Silvana Togneri, Alfano, Marco, Lenzitti, Biagio, Bosco, Giosuè Lo, McCaffery, Fergal, Taibi, Davide, Helfert, Markus.  2019.  Improving Communication in Risk Management of Health Information Technology Systems by means of Medical Text Simplification. 2019 IEEE Symposium on Computers and Communications (ISCC). :1135–1140.
Health Information Technology Systems (HITS) are increasingly used to improve the quality of patient care while reducing costs. These systems have been developed in response to the changing models of care to an ongoing relationship between patient and care team, supported by the use of technology due to the increased instance of chronic disease. However, the use of HITS may increase the risk to patient safety and security. While standards can be used to address and manage these risks, significant communication problems exist between experts working in different departments. These departments operate in silos often leading to communication breakdowns. For example, risk management stakeholders who are not clinicians may struggle to understand, define and manage risks associated with these systems when talking to medical professionals as they do not understand medical terminology or the associated care processes. In order to overcome this communication problem, we propose the use of the “Three Amigos” approach together with the use of the SIMPLE tool that has been developed to assist patients in understanding medical terms. This paper examines how the “Three Amigos” approach and the SIMPLE tool can be used to improve estimation of severity of risk by non-clinical risk management stakeholders and provides a practical example of their use in a ten step risk management process.
2020-08-24
Dong, Kexiong, Luo, Weiwei, Pan, Xiaohua, Yin, Jianwei.  2019.  An Internet Medical Care-Oriented Service Security Open Platform. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :489–492.
As an inevitable trend of information development of hospitals, Internet hospitals provide a series of convenient online services for patients such as registration, consultation, queuing, payment and medicine pick-up. However, hospitals have to face huge challenges, and deploy an Internet medical care-oriented service security open platform to ensure the security of personal privacy data and avoid malicious attacks from the Internet, so as to prevent illegal stealing of medical data. The service security open platform provides visualized control for the unified and standardized connection process and data access process.
2020-06-01
Dhas, Y. Justin, Jeyanthi, P..  2019.  A Review on Internet of Things Protocol and Service Oriented Middleware. 2019 International Conference on Communication and Signal Processing (ICCSP). :0104–0108.
This paper surveys a review of Internet of Things (IoT) protocols, Service oriented Middleware in IoT. The modern development of IoT, expected to create many divorce application in health care without human intervention. Various protocols are involved in the applications development. Researchers are doing research for desirable protocol with all functionalities. Middleware for an IoT provides interoperability between the devices or applications. The engineering of an IoT dependent on Service Oriented Architecture (SOA), it operates as middleware. We survey the existing SOA based IoT middleware and its functionalities.
2020-10-12
Khayat, Mohamad, Barka, Ezedin, Sallabi, Farag.  2019.  SDN\_Based Secure Healthcare Monitoring System(SDN-SHMS). 2019 28th International Conference on Computer Communication and Networks (ICCCN). :1–7.
Healthcare experts and researchers have been promoting the need for IoT-based remote health monitoring systems that take care of the health of elderly people. However, such systems may generate large amounts of data, which makes the security and privacy of such data to become imperative. This paper studies the security and privacy concerns of the existing Healthcare Monitoring System (HMS) and proposes a reference architecture (security integration framework) for managing IoT-based healthcare monitoring systems that ensures security, privacy, and reliable service delivery for patients and elderly people to reduce and avoid health related risks. Our proposed framework will be in the form of state-of-the-art Security Platform, for HMS, using the emerging Software Defined Network (SDN) networking paradigm. Our proposed integration framework eliminates the dependency on specific Software or vendor for different security systems, and allows for the benefits from the functional and secure applications, and services provided by the SDN platform.
2020-02-10
Cetin, Cagri, Goldgof, Dmitry, Ligatti, Jay.  2019.  SQL-Identifier Injection Attacks. 2019 IEEE Conference on Communications and Network Security (CNS). :151–159.
This paper defines a class of SQL-injection attacks that are based on injecting identifiers, such as table and column names, into SQL statements. An automated analysis of GitHub shows that 15.7% of 120,412 posted Java source files contain code vulnerable to SQL-Identifier Injection Attacks (SQL-IDIAs). We have manually verified that some of the 18,939 Java files identified during the automated analysis are indeed vulnerable to SQL-ID IAs, including deployed Electronic Medical Record software for which SQL-IDIAs enable discovery of confidential patient information. Although prepared statements are the standard defense against SQL injection attacks, existing prepared-statement APIs do not protect against SQL-IDIAs. This paper therefore proposes and evaluates an extended prepared-statement API to protect against SQL-IDIAs.
2020-02-17
Rizk, Dominick, Rizk, Rodrigue, Hsu, Sonya.  2019.  Applied Layered-Security Model to IoMT. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :227–227.

Nowadays, IoT has crossed all borders and become ubiquitous in everyday life. This emerging technology has a huge success in closing the gap between the digital and the real world. However, security and privacy become huge concerns especially in the medical field which prevent the healthcare industry from adopting it despite its benefits and potentials. This paper focuses on identifying potential security threats to the IoMT and presents the security mechanisms to remove any possible impediment from immune information security of IoMT. A summarized framework of the layered-security model is proposed followed by a specific assessment review of each layer.

2020-09-28
Abie, Habtamu.  2019.  Cognitive Cybersecurity for CPS-IoT Enabled Healthcare Ecosystems. 2019 13th International Symposium on Medical Information and Communication Technology (ISMICT). :1–6.

Cyber Physical Systems (CPS)-Internet of Things (IoT) enabled healthcare services and infrastructures improve human life, but are vulnerable to a variety of emerging cyber-attacks. Cybersecurity specialists are finding it hard to keep pace of the increasingly sophisticated attack methods. There is a critical need for innovative cognitive cybersecurity for CPS-IoT enabled healthcare ecosystem. This paper presents a cognitive cybersecurity framework for simulating the human cognitive behaviour to anticipate and respond to new and emerging cybersecurity and privacy threats to CPS-IoT and critical infrastructure systems. It includes the conceptualisation and description of a layered architecture which combines Artificial Intelligence, cognitive methods and innovative security mechanisms.

2020-01-21
Jimenez, Jaime Ibarra, Jahankhani, Hamid.  2019.  ``Privacy by Design'' Governance Framework to Achieve Privacy Assurance of Personal Health Information (PHI) Processed by IoT-Based Telemedicine Devices and Applications Within Healthcare Services. 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3). :212–212.

Future that IoT has to enhance the productivity on healthcare applications.

2019-08-05
Jimenez, J. I., Jahankhani, H..  2019.  “Privacy by Design” Governance Framework to Achieve Privacy Assurance of Personal Health Information (PHI) Processed by IoT-based Telemedicine Devices and Applications Within Healthcare Services. 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3). :212–212.

Future that IoT has to enhance the productivity on healthcare applications.

2019-08-26
Markakis, E., Nikoloudakis, Y., Pallis, E., Manso, M..  2019.  Security Assessment as a Service Cross-Layered System for the Adoption of Digital, Personalised and Trusted Healthcare. 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). :91-94.

The healthcare sector is exploring the incorporation of digital solutions in order to improve access, reduce costs, increase quality and enhance their capacity in reaching a higher number of citizens. However, this opens healthcare organisations' systems to external elements used within or beyond their premises, new risks and vulnerabilities in what regards cyber threats and incidents. We propose the creation of a Security Assessment as a Service (SAaaS) crosslayered system that is able to identify vulnerabilities and proactively assess and mitigate threats in an IT healthcare ecosystem exposed to external devices and interfaces, considering that most users are not experts (even technologically illiterate") in cyber security and, thus, unaware of security tactics or policies whatsoever. The SAaaS can be integrated in an IT healthcare environment allowing the monitoring of existing and new devices, the limitation of connectivity and privileges to new devices, assess a device's cybersecurity risk and - based on the device's behaviour - the assignment and revoking of privileges. The SAaaS brings a controlled cyber aware environment that assures security, confidentiality and trust, even in the presence of non-trusted devices and environments.

2020-06-01
Bhargavi, US., Gundibail, Shivaprasad, Manjunath, KN., Renuka, A..  2019.  Security of Medical Big Data Images using Decoy Technique. 2019 International Conference on Automation, Computational and Technology Management (ICACTM). :310–314.

Tele-radiology is a technology that helps in bringing the communication between the radiologist, patients and healthcare units situated at distant places. This involves exchange of medical centric data. The medical data may be stored as Electronic Health Records (EHR). These EHRs contain X-Rays, CT scans, MRI reports. Hundreds of scans across multiple radiology centers lead to medical big data (MBD). Healthcare Cloud can be used to handle MBD. Since lack of security to EHRs can cause havoc in medical IT, healthcare cloud must be secure. It should ensure secure sharing and storage of EHRs. This paper proposes the application of decoy technique to provide security to EHRs. The EHRs have the risk of internal attacks and external intrusion. This work addresses and handles internal attacks. It also involves study on honey-pots and intrusion detection techniques. Further it identifies the possibility of an intrusion and alerts the administrator. Also the details of intrusions are logged.

2019-03-26
[Anonymous].  2019.  Synthesizing Stealthy Reprogramming Attacks on Cardiac Devices. IEEE/ACM International Conference on Cyber-Physical Systems (ICCPS 2019).

An Implantable Cardioverter Defibrillator (ICD) is a medical device used for the detection of potentially fatal cardiac arrhythmias and their treatment through the delivery of electrical shocks intended to restore normal heart rhythm. An ICDreprogrammingattackseeks to alter the device’s parameters to induce unnecessary therapy or prevent required therapy. In this paper, we present a formal approach for the synthesis of ICD reprogramming attacks that are both effective, i.e., lead to fundamental changes in the required therapy, and stealthy, i.e., are hard to detect. We focus on the discrimination algorithm underlying Boston Scientific devices (one of the principal ICD manufacturers) and formulate the synthesis problem as one of multi-objective optimization. Our solution technique is based on an Optimization Modulo Theories encoding of the problem and allows us to derive device parameters that are optimal with respect to the effectiveness-stealthiness tradeoff. Our method can be tailored to the patient’s current condition, and readily generalizes to new rhythms. To the best of our knowledge, our work is the first to derive systematic ICD reprogramming attacks designed to maximize therapy disruption while minimizing detection.

2020-08-13
Augusto, Cristian, Morán, Jesús, De La Riva, Claudio, Tuya, Javier.  2019.  Test-Driven Anonymization for Artificial Intelligence. 2019 IEEE International Conference On Artificial Intelligence Testing (AITest). :103—110.
In recent years, data published and shared with third parties to develop artificial intelligence (AI) tools and services has significantly increased. When there are regulatory or internal requirements regarding privacy of data, anonymization techniques are used to maintain privacy by transforming the data. The side-effect is that the anonymization may lead to useless data to train and test the AI because it is highly dependent on the quality of the data. To overcome this problem, we propose a test-driven anonymization approach for artificial intelligence tools. The approach tests different anonymization efforts to achieve a trade-off in terms of privacy (non-functional quality) and functional suitability of the artificial intelligence technique (functional quality). The approach has been validated by means of two real-life datasets in the domains of healthcare and health insurance. Each of these datasets is anonymized with several privacy protections and then used to train classification AIs. The results show how we can anonymize the data to achieve an adequate functional suitability in the AI context while maintaining the privacy of the anonymized data as high as possible.
2020-07-24
Tan, Syh-Yuan, Yeow, Kin-Woon, Hwang, Seong Oun.  2019.  Enhancement of a Lightweight Attribute-Based Encryption Scheme for the Internet of Things. IEEE Internet of Things Journal. 6:6384—6395.

In this paper, we present the enhancement of a lightweight key-policy attribute-based encryption (KP-ABE) scheme designed for the Internet of Things (IoT). The KP-ABE scheme was claimed to achieve ciphertext indistinguishability under chosen-plaintext attack in the selective-set model but we show that the KP-ABE scheme is insecure even in the weaker security notion, namely, one-way encryption under the same attack and model. In particular, we show that an attacker can decrypt a ciphertext which does not satisfy the policy imposed on his decryption key. Subsequently, we propose an efficient fix to the KP-ABE scheme as well as extending it to be a hierarchical KP-ABE (H-KP-ABE) scheme that can support role delegation in IoT applications. An example of applying our H-KP-ABE on an IoT-connected healthcare system is given to highlight the benefit of the delegation feature. Lastly, using the NIST curves secp192k1 and secp256k1, we benchmark the fixed (hierarchical) KP-ABE scheme on an Android phone and the result shows that the scheme is still the fastest in the literature.

2020-10-06
Ibrahim, Romani Farid.  2019.  Mobile Transaction Processing for a Distributed War Environment. 2019 14th International Conference on Computer Science Education (ICCSE). :856—862.

The battlefield environment differs from the natural environment in terms of irregular communications and the possibility of destroying communication and medical units by enemy forces. Information that can be collected in a war environment by soldiers is important information and must reach top-level commanders in time for timely decisions making. Also, ambulance staff in the battlefield need to enter the data of injured soldiers after the first aid, so that the information is available for the field hospital staff to prepare the needs for incoming injured soldiers.In this research, we propose two transaction techniques to handle these issues and use different concurrency control protocols, depending on the nature of the transaction and not a one concurrency control protocol for all types of transactions. Message transaction technique is used to collect valuable data from the battlefield by soldiers and allows top-level commanders to view it according to their permissions by logging into the system, to help them make timely decisions. In addition, use the capabilities of DBMS tools to organize data and generate reports, as well as for future analysis. Medical service unit transactional workflow technique is used to provides medical information to the medical authorities about the injured soldiers and their status, which helps them to prepare the required needs before the wounded soldiers arrive at the hospitals. Both techniques handle the disconnection problem during transaction processing.In our approach, the transaction consists of four phases, reading, editing, validation, and writing phases, and its processing is based on the optimistic concurrency control protocol, and the rules of actionability that describe how a transaction behaves if a value-change is occurred on one or more of its attributes during its processing time by other transactions.

2020-06-26
Salman, Ahmad, El-Tawab, Samy.  2019.  Efficient Hardware/Software Co-Design of Elliptic-Curve Cryptography for the Internet of Things. 2019 International Conference on Smart Applications, Communications and Networking (SmartNets). :1—6.

The Internet of Things (IoT) is connecting the world in a way humanity has never seen before. With applications in healthcare, agricultural, transportation, and more, IoT devices help in bridging the gap between the physical and the virtual worlds. These devices usually carry sensitive data which requires security and protection in transit and rest. However, the limited power and energy consumption make it harder and more challenging to implementing security protocols, especially Public-Key Cryptosystems (PKC). In this paper, we present a hardware/software co-design for Elliptic-Curve Cryptography (ECC) PKC suitable for lightweight devices. We present the implementation results for our design on an edge node to be used for indoor localization in a healthcare facilities.

2020-09-28
Guo, Hao, Li, Wanxin, Nejad, Mark, Shen, Chien-Chung.  2019.  Access Control for Electronic Health Records with Hybrid Blockchain-Edge Architecture. 2019 IEEE International Conference on Blockchain (Blockchain). :44–51.
The global Electronic Health Record (EHR) market is growing dramatically and expected to reach \$39.7 billions by 2022. To safe-guard security and privacy of EHR, access control is an essential mechanism for managing EHR data. This paper proposes a hybrid architecture to facilitate access control of EHR data by using both blockchain and edge node. Within the architecture, a blockchain-based controller manages identity and access control policies and serves as a tamper-proof log of access events. In addition, off-chain edge nodes store the EHR data and apply policies specified in Abbreviated Language For Authorization (ALFA) to enforce attribute-based access control on EHR data in collaboration with the blockchain-based access control logs. We evaluate the proposed hybrid architecture by utilizing Hyperledger Composer Fabric blockchain to measure the performance of executing smart contracts and ACL policies in terms of transaction processing time and response time against unauthorized data retrieval.
2020-02-17
Yang, Chen, Liu, Tingting, Zuo, Lulu, Hao, Zhiyong.  2019.  An Empirical Study on the Data Security and Privacy Awareness to Use Health Care Wearable Devices. 2019 16th International Conference on Service Systems and Service Management (ICSSSM). :1–6.
Recently, several health care wearable devices which can intervene in health and collect personal health data have emerged in the medical market. Although health care wearable devices promote the integration of multi-layer medical resources and bring new ways of health applications for users, it is inevitable that some problems will be brought. This is mainly manifested in the safety protection of medical and health data and the protection of user's privacy. From the users' point of view, the irrational use of medical and health data may bring psychological and physical negative effects to users. From the government's perspective, it may be sold by private businesses in the international arena and threaten national security. The most direct precaution against the problem is users' initiative. For better understanding, a research model is designed by the following five aspects: Security knowledge (SK), Security attitude (SAT), Security practice (SP), Security awareness (SAW) and Security conduct (SC). To verify the model, structural equation analysis which is an empirical approach was applied to examine the validity and all the results showed that SK, SAT, SP, SAW and SC are important factors affecting users' data security and privacy protection awareness.