Biblio

Filters: Keyword is Database and Storage Security  [Clear All Filters]
2014-09-17
Hwang, JeeHyun, Williams, Laurie, Vouk, Mladen.  2014.  Access Control Policy Evolution: An Empirical Study. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :28:1–28:2.

Access Control Policies (ACPs) evolve. Understanding the trends and evolution patterns of ACPs could provide guidance about the reliability and maintenance of ACPs. Our research goal is to help policy authors improve the quality of ACP evolution based on the understanding of trends and evolution patterns in ACPs We performed an empirical study by analyzing the ACP changes over time for two systems: Security Enhanced Linux (SELinux), and an open-source virtual computing platform (VCL). We measured trends in terms of the number of policy lines and lines of code (LOC), respectively. We observed evolution patterns. For example, an evolution pattern st1 → st2 says that st1 (e.g., "read") evolves into st2 (e.g., "read" and "write"). This pattern indicates that policy authors add "write" permission in addition to existing "read" permission. We found that some of evolution patterns appear to occur more frequently.

Das, Anupam, Borisov, Nikita, Caesar, Matthew.  2014.  Analyzing an Adaptive Reputation Metric for Anonymity Systems. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :11:1–11:11.

Low-latency anonymity systems such as Tor rely on intermediate relays to forward user traffic; these relays, however, are often unreliable, resulting in a degraded user experience. Worse yet, malicious relays may introduce deliberate failures in a strategic manner in order to increase their chance of compromising anonymity. In this paper we propose using a reputation metric that can profile the reliability of relays in an anonymity system based on users' past experience. The two main challenges in building a reputation-based system for an anonymity system are: first, malicious participants can strategically oscillate between good and malicious nature to evade detection, and second, an observed failure in an anonymous communication cannot be uniquely attributed to a single relay. Our proposed framework addresses the former challenge by using a proportional-integral-derivative (PID) controller-based reputation metric that ensures malicious relays adopting time-varying strategic behavior obtain low reputation scores over time, and the latter by introducing a filtering scheme based on the evaluated reputation score to effectively discard relays mounting attacks. We collect data from the live Tor network and perform simulations to validate the proposed reputation-based filtering scheme. We show that an attacker does not gain any significant benefit by performing deliberate failures in the presence of the proposed reputation framework.

Forget, Alain, Komanduri, Saranga, Acquisti, Alessandro, Christin, Nicolas, Cranor, Lorrie Faith, Telang, Rahul.  2014.  Building the Security Behavior Observatory: An Infrastructure for Long-term Monitoring of Client Machines. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :24:1–24:2.

We present an architecture for the Security Behavior Observatory (SBO), a client-server infrastructure designed to collect a wide array of data on user and computer behavior from hundreds of participants over several years. The SBO infrastructure had to be carefully designed to fulfill several requirements. First, the SBO must scale with the desired length, breadth, and depth of data collection. Second, we must take extraordinary care to ensure the security of the collected data, which will inevitably include intimate participant behavioral data. Third, the SBO must serve our research interests, which will inevitably change as collected data is analyzed and interpreted. This short paper summarizes some of our design and implementation benefits and discusses a few hurdles and trade-offs to consider when designing such a data collection system.

King, Jason, Williams, Laurie.  2014.  Log Your CRUD: Design Principles for Software Logging Mechanisms. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :5:1–5:10.

According to a 2011 survey in healthcare, the most commonly reported breaches of protected health information involved employees snooping into medical records of friends and relatives. Logging mechanisms can provide a means for forensic analysis of user activity in software systems by proving that a user performed certain actions in the system. However, logging mechanisms often inconsistently capture user interactions with sensitive data, creating gaps in traces of user activity. Explicit design principles and systematic testing of logging mechanisms within the software development lifecycle may help strengthen the overall security of software. The objective of this research is to observe the current state of logging mechanisms by performing an exploratory case study in which we systematically evaluate logging mechanisms by supplementing the expected results of existing functional black-box test cases to include log output. We perform an exploratory case study of four open-source electronic health record (EHR) logging mechanisms: OpenEMR, OSCAR, Tolven eCHR, and WorldVistA. We supplement the expected results of 30 United States government-sanctioned test cases to include log output to track access of sensitive data. We then execute the test cases on each EHR system. Six of the 30 (20%) test cases failed on all four EHR systems because user interactions with sensitive data are not logged. We find that viewing protected data is often not logged by default, allowing unauthorized views of data to go undetected. Based on our results, we propose a set of principles that developers should consider when developing logging mechanisms to ensure the ability to capture adequate traces of user activity.

Feigenbaum, Joan, Jaggard, Aaron D., Wright, Rebecca N..  2014.  Open vs. Closed Systems for Accountability. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :4:1–4:11.

The relationship between accountability and identity in online life presents many interesting questions. Here, we first systematically survey the various (directed) relationships among principals, system identities (nyms) used by principals, and actions carried out by principals using those nyms. We also map these relationships to corresponding accountability-related properties from the literature. Because punishment is fundamental to accountability, we then focus on the relationship between punishment and the strength of the connection between principals and nyms. To study this particular relationship, we formulate a utility-theoretic framework that distinguishes between principals and the identities they may use to commit violations. In doing so, we argue that the analogue applicable to our setting of the well known concept of quasilinear utility is insufficiently rich to capture important properties such as reputation. We propose more general utilities with linear transfer that do seem suitable for this model. In our use of this framework, we define notions of "open" and "closed" systems. This distinction captures the degree to which system participants are required to be bound to their system identities as a condition of participating in the system. This allows us to study the relationship between the strength of identity binding and the accountability properties of a system.

Durbeck, Lisa J. K., Athanas, Peter M., Macias, Nicholas J..  2014.  Secure-by-construction Composable Componentry for Network Processing. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :27:1–27:2.

Techniques commonly used for analyzing streaming video, audio, SIGINT, and network transmissions, at less-than-streaming rates, such as data decimation and ad-hoc sampling, can miss underlying structure, trends and specific events held in the data[3]. This work presents a secure-by-construction approach [7] for the upper-end data streams with rates from 10- to 100 Gigabits per second. The secure-by-construction approach strives to produce system security through the composition of individually secure hardware and software components. The proposed network processor can be used not only at data centers but also within networks and onboard embedded systems at the network periphery for a wide range of tasks, including preprocessing and data cleansing, signal encoding and compression, complex event processing, flow analysis, and other tasks related to collecting and analyzing streaming data. Our design employs a four-layer scalable hardware/software stack that can lead to inherently secure, easily constructed specialized high-speed stream processing. This work addresses the following contemporary problems: (1) There is a lack of hardware/software systems providing stream processing and data stream analysis operating at the target data rates; for high-rate streams the implementation options are limited: all-software solutions can't attain the target rates[1]. GPUs and GPGPUs are also infeasible: they were not designed for I/O at 10-100Gbps; they also have asymmetric resources for input and output and thus cannot be pipelined[4, 2], whereas custom chip-based solutions are costly and inflexible to changes, and FPGA-based solutions are historically hard to program[6]; (2) There is a distinct advantage to utilizing high-bandwidth or line-speed analytics to reduce time-to-discovery of information, particularly ones that can be pipelined together to conduct a series of processing tasks or data tests without impeding data rates; (3) There is potentially significant network infrastructure cost savings possible from compact and power-efficient analytic support deployed at the network periphery on the data source or one hop away; (4) There is a need for agile deployment in response to changing objectives; (5) There is an opportunity to constrain designs to use only secure components to achieve their specific objectives. We address these five problems in our stream processor design to provide secure, easily specified processing for low-latency, low-power 10-100Gbps in-line processing on top of a commodity high-end FPGA-based hardware accelerator network processor. With a standard interface a user can snap together various filter blocks, like Legos™, to form a custom processing chain. The overall design is a four-layer solution in which the structurally lowest layer provides the vast computational power to process line-speed streaming packets, and the uppermost layer provides the agility to easily shape the system to the properties of a given application. Current work has focused on design of the two lowest layers, highlighted in the design detail in Figure 1. The two layers shown in Figure 1 are the embeddable portion of the design; these layers, operating at up to 100Gbps, capture both the low- and high frequency components of a signal or stream, analyze them directly, and pass the lower frequency components, residues to the all-software upper layers, Layers 3 and 4; they also optionally supply the data-reduced output up to Layers 3 and 4 for additional processing. Layer 1 is analogous to a systolic array of processors on which simple low-level functions or actions are chained in series[5]. Examples of tasks accomplished at the lowest layer are: (a) check to see if Field 3 of the packet is greater than 5, or (b) count the number of X.75 packets, or (c) select individual fields from data packets. Layer 1 provides the lowest latency, highest throughput processing, analysis and data reduction, formulating raw facts from the stream; Layer 2, also accelerated in hardware and running at full network line rate, combines selected facts from Layer 1, forming a first level of information kernels. Layer 2 is comprised of a number of combiners intended to integrate facts extracted from Layer 1 for presentation to Layer 3. Still resident in FPGA hardware and hardware-accelerated, a Layer 2 combiner is comprised of state logic and soft-core microprocessors. Layer 3 runs in software on a host machine, and is essentially the bridge to the embeddable hardware; this layer exposes an API for the consumption of information kernels to create events and manage state. The generated events and state are also made available to an additional software Layer 4, supplying an interface to traditional software-based systems. As shown in the design detail, network data transitions systolically through Layer 1, through a series of light-weight processing filters that extract and/or modify packet contents. All filters have a similar interface: streams enter from the left, exit the right, and relevant facts are passed upward to Layer 2. The output of the end of the chain in Layer 1 shown in the Figure 1 can be (a) left unconnected (for purely monitoring activities), (b) redirected into the network (for bent pipe operations), or (c) passed to another identical processor, for extended processing on a given stream (scalability).