Modelling User Availability in Workflow Resiliency Analysis

John C. Mace, Charles Morisset & Aad van Moorsel

School of Computing Science
Newcastle University, UK

21 April 2015
Take Home Message

• Automatically calculate the resiliency of a workflow
 – Resiliency is a measure of success rate for a workflow executed by users who may become unavailable at runtime
 – Resiliency indicates risk of: workflow failure, security policy violation
 – Resiliency informs: mitigation strategy, redesign, recruitment, etc.

• Runtime user availability can be modelled in several ways when calculating resiliency

• Availability model choice can impact the resiliency calculated for the same workflow
 – Large resiliency variance
 – Also impacts on complexity, e.g., computation time
Workflow

Users = \{u_1,u_2,u_3\}

- Tasks
- Ordering
- Users

- Permissions
- Constraints
- Assignment?
Workflow Satisfiability Problem

Design time

\[a_1 : \quad u_1 \quad u_3 \quad \times \quad \text{Design time} \]
\[a_2 : \quad u_1 \quad u_2 \quad u_3 \]

Run time

\[a_2 : \quad u_1 \quad \text{u}_2 \quad \text{unavailable} \rightarrow u_3 \quad \times \quad \text{Run time} \]
\[a_3 : \quad u_2 \quad u_3 \quad u_1 \]
Workflow Resiliency

- $k = 1$, 10 possible cases of up to 1 unavailable user
- 1 example case - u_2 unavailable at t_1

Workflow w_1
- 0 resiliency \rightarrow current
- w_1 : assign 4 of 10 cases \rightarrow new

Workflow w_2
- 0 resiliency \rightarrow current
- w_2 : assign 9 of 10 cases \rightarrow new
Assignment Process

- Maximise v returned by value function of a Markov Decision Process (MDP)

- **WSP** → full user availability
 - can Success be reached?
 - $v = 0$ or 1

- **Resiliency** → probabilistic user availability
 - maximum probability of reaching Success?
 - $0 \geq v \leq 1$
Non-deterministic Availability

- **Static model** – make choice before start of workflow
- **Decremental model** - make choice for each task while u_i is available
- **Dynamic model** - make choice for each task $[m_1]$
Bounded Availability

- Up to k users can become unavailable across entire workflow
- For $k = 1$, consider all possible cases
 - Assume decremental availability
 - Assume cases are equiprobable

<table>
<thead>
<tr>
<th>All users available</th>
<th>t_1</th>
<th>t_2</th>
<th>t_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_1,u_2,u_3</td>
<td>u_1,u_2,u_3</td>
<td>u_1,u_2,u_3</td>
<td>u_1,u_2,u_3</td>
</tr>
<tr>
<td>u_1 unavailable at t_3</td>
<td>u_1,u_2,u_3</td>
<td>u_1,u_2,u_3</td>
<td>u_2,u_3</td>
</tr>
<tr>
<td>u_2 unavailable at t_2</td>
<td>u_1,u_2,u_3</td>
<td>u_1,u_3</td>
<td>u_1,u_3</td>
</tr>
<tr>
<td>u_3 unavailable at t_1</td>
<td>u_1,u_2</td>
<td>u_1,u_2</td>
<td>u_1,u_2</td>
</tr>
</tbody>
</table>

... and so on for every possible case $[m_2]$
Probabilistic Availability

\(u_i \) has same probability for each task \(t_i \) \[m_3\]

\[
\begin{align*}
u_1 & \quad 0.75 \quad \text{Available for} \quad t_i \\
0.25 & \quad \text{Unavailable for} \quad t_i
\end{align*}
\]

\(u_i \) has different probability for each task \(t_i \) \[m_4\]

\[
\begin{align*}
u_1 & \quad 0.75 \quad \text{Available for} \quad t_1 \\
0.25 & \quad \text{Unavailable for} \quad t_1
\end{align*}
\]

\[
\begin{align*}
u_1 & \quad 0.68 \quad \text{Available for} \quad t_2 \\
0.32 & \quad \text{Unavailable for} \quad t_2
\end{align*}
\]

\[
\begin{align*}
u_1 & \quad 0.93 \quad \text{Available for} \quad t_3 \\
0.07 & \quad \text{Unavailable for} \quad t_3
\end{align*}
\]
Combined Models

- Combine both non-deterministic and probabilistic availability
 - Non-deterministic for t_2
 - Probabilistic for t_1 and t_3

- More complex, dependent availability models can be considered, e.g.
 - Current availability
 - Availability for previous tasks
 - Availability of other users

- u_1
 - Available for t_1
 - Unavailable for t_1

- u_1
 - Available for t_2
 - Unavailable for t_2

- u_1
 - Available for t_3
 - Unavailable for t_3
Calculating Resiliency

• Solve **MDP** to find ν using model checker **PRISM**\(^1\)
• Model consists of interactive named modules containing:

 – Variables \hspace{1em} name : type \textbf{init} \textbf{value}

 – Commands \hspace{1em} [\textit{label}] \textit{guard} \rightarrow p_1 : \text{update}_1 \& \ldots \& p_n : \text{update}_n

• Non-deterministic choice

 – [\textit{label}_i] \textit{guard}_i \rightarrow \text{update}_1

 – [\textit{label}_i] \textit{guard}_i \rightarrow \text{update}_2

• Satisfiability property

 – Pmax =? [F (t=-1) \& \neg \text{fail}]

\(^1\)http://www.prismmodelchecker.org/
Resiliency Analysis

<table>
<thead>
<tr>
<th>Model</th>
<th>Res</th>
<th>States</th>
<th>Transitions</th>
<th>Build time (s)</th>
<th>Verify time (s)</th>
<th>File size (KB)</th>
<th>Size on disk (KB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[m₁]</td>
<td>1.00</td>
<td>8530</td>
<td>31321</td>
<td>0.219</td>
<td>0.015</td>
<td>2.51</td>
<td>4.00</td>
</tr>
<tr>
<td>[m₂]</td>
<td>0.43</td>
<td>50489</td>
<td>64377</td>
<td>0.125</td>
<td>0.172</td>
<td>8.95</td>
<td>12.00</td>
</tr>
<tr>
<td>[m₃]</td>
<td>0.41</td>
<td>8530</td>
<td>31321</td>
<td>0.172</td>
<td>0.016</td>
<td>2.50</td>
<td>4.00</td>
</tr>
<tr>
<td>[m₄]</td>
<td>0.79</td>
<td>8530</td>
<td>31321</td>
<td>0.172</td>
<td>0.016</td>
<td>3.21</td>
<td>4.00</td>
</tr>
</tbody>
</table>

[m₁]: dynamic, non-deterministic
[m₂]: decremental, bounded (k=2), equiprobable
[m₃]: dynamic, probabilistic (same per task)
[m₄]: dynamic, probabilistic (different per task)
Conclusion

- We can encode a workflow with a user availability model as a Markov Decision Processes (MDP)
- Used the model checker PRISM to automatically solve an MDP and provide measure of workflow success rate, or resiliency
- Shown user availability in workflows can be modelled in several ways
 - Probabilistic, non-deterministic, bounded, etc.
- Highlighted availability model choice can have an impact on resiliency computations for the same workflow
- We make no assumption on which one is best as this will be context dependent
Future Work

• Analyse different sizes of workflow
 - How does computing resiliency scale?
 - How do complexity metrics change?

• More complex security policies
 - Cardinality constraints

• Development of tools and methodologies for workflow designers
 - Understand what is an appropriate availability model?
 - Automatically calculate appropriate resiliency
References

Contact: john.mace@ncl.ac.uk