2012 Science of Security Community Meeting:
Panel Discussion

Dr. Jay Lala
Principal Engineering Fellow
30 November 2012
Applications of SoS

- It is gratifying to see progress in defining the much needed foundations of cyber security.

- What’s the grander purpose of Science?
 - Often times, Science is propelled purely by the quest for human knowledge, e.g., looking for life on Mars or physical evidence of Higgs Boson
 - Other times, Science is driven by practical needs, e.g., to fly faster, higher, farther

- SoS has a very immediate application: How to engineer secure systems?
 - Having a clearly identified need can also focus SoS research

SoS research & its engineering application can proceed in a symbiotic relationship.
Engineering Secure Systems

- DoD Weapon System Acquisition Policies, Requirements and Specs
- Architect, Design, Model & Simulate Phases
- Test & Evaluation

SoS can help in full life-cycle of engineering secure systems.
MEMORANDUM FOR SECRETARIES OF THE MILITARY DEPARTMENTS
DIRECTORS OF THE DEFENSE AGENCIES

SUBJECT: Document Streamlining – Program Protection Plan (PPP)
5.0. Threats, Vulnerabilities, and Countermeasures

- Summarize any identified threats and vulnerabilities to CPI and critical functions/components in Table 5.0-1 below. Also identify any countermeasures selected to mitigate risks of compromise.

5.2. Vulnerabilities

- What vulnerabilities have been identified to date?
- How will the program identify new vulnerabilities (both system-level and in the development environment) to the CPI and mission-critical functions and components? Who is responsible for doing this, and with what frequency? Include the responsible person in the table in Section 1.2.
- How often will vulnerabilities be re-assessed?
- How will identified vulnerabilities be mitigated?
Example SoS Questions wrt PPP

- Can SoS provide a foundation for a taxonomy of vulnerabilities?
- Is identification of vulnerabilities in CPI (Critical Program Information) and critical functions/components, followed by definition of countermeasures, the way to engineer secure systems?
- Would we modify this approach with the added knowledge of SoS?
- If yes, what might the new process look like?
Cyber Test & Evaluation

Test Capabilities for Cyber Defense Test and Evaluation

Workshop 1

Deputy Assistant Secretary of Defense, Developmental Test and Evaluation

DASD, DT&E Perspective

“Requirements for test and evaluation in the defensive cyber domain for MDAP and MAIS programs are not fully understood.”

“Thorough cyber testing needs to be incorporated into weapon system and operational support system development.”

-- DT&E FY2011 Annual Report to Congress
Cyber Defense Test Capability Features

- Operational network environments including GIG services
- Realistic threat portrayals
- Representations of network defense capabilities
- Protection against collateral damage outside test
- Ability to *do the mission in a contested cyber environment* during test events
- Evaluation results that identify system vulnerabilities
Example SoS Questions wrt Cyber T&E

- Can SoS provide a foundation for a *taxonomy of threats* that can be used for *realistic threat portrayals*?
- How does one *model network defenses*?
- What are the critical parameters that capture a *contested cyber environment*?
- How does one estimate *residual system vulnerabilities*?
<table>
<thead>
<tr>
<th>Macro Challenges – “Silicon”</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Silicon”</td>
</tr>
<tr>
<td>Distributed Policy Specification and Enforcement</td>
</tr>
<tr>
<td>Federated Monitoring and Policy Verification</td>
</tr>
<tr>
<td>Data Level Entitlements Policy Enforcement</td>
</tr>
<tr>
<td>Distributed Interoperable Data Protection</td>
</tr>
<tr>
<td>Predictably Secure Systems and Service Development</td>
</tr>
<tr>
<td>Dynamic Zone Least Privilege</td>
</tr>
<tr>
<td>Massive Scale Behavioral Surveillance</td>
</tr>
</tbody>
</table>
Macro Challenges - “Carbon”

<table>
<thead>
<tr>
<th>“Carbon”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavioral Economics and Incentives</td>
</tr>
<tr>
<td>Behavioral Psychology and Education</td>
</tr>
<tr>
<td>Security and Usability / User Experience</td>
</tr>
<tr>
<td>Opportunities from Augmented Reality</td>
</tr>
<tr>
<td>Risk Ontology, Measurement and Metrics</td>
</tr>
<tr>
<td>Human Readable Policy Expression</td>
</tr>
<tr>
<td>Fail-Secure/Fail-Safe Design Principles Education</td>
</tr>
</tbody>
</table>
Science of Security: Thoughts from the Networking World

Bret Hartman
VP & CTO

Security and Government Group

November 2012
We’re all moving to the cloud – but…

• 30 years of increasing security challenges
 • Security research has been ineffective in defending us from the acceleration of ever larger compromises and more serious breaches

• Securing the cloud is a massive transition
 • Add-on -> embedded -> cloud
 • Diminishing effectiveness of device and data center security
 • Protection burden is shifting to service providers
 • Service providers are ill-equipped to deal with the threats

• Increased risks in the cloud
 • Centralized services are consolidated targets
 • Questionable isolation and multi-tenancy
 • Expansion of DDoS as a component of a multi-pronged attack

Software Defined Networking (SDN) is the next wave – and security is not ready
Evolution of Data Center

Distributed
- Manual Provisioning
- Limited scaling
- Rack-wide VM mobility

Fabric Based
- Policy-based Provisioning
- Scale Physical & Virtual/Cloud
- DC-wide/Cross-DC VM Mobility

Application Driven
- Service-centric Provisioning
- Flexible – Anywhere, Anytime
- Cross-cloud VM Mobility

Integrated Fabric & Cloud World of Many Clouds
Programmability at Multiple Layers of the Network

Flexibility in Deriving Abstractions
SDN and Security Research Topics

• Securing the SDN
 Ensure that the security policy defined by the applications is enforced by the SDN stack
 Chain of trust from network devices, controllers, and applications
 Interoperable security policy enforcement across multiple vendors

• SDN delivering security services
 Network virtualization provides new opportunities to segment traffic end-to-end
 Network intelligence provides unprecedented potential intelligence analytics

• Can we rely on the Service Providers to protect all of us?
 Transparency vs. privacy
 Assurance vs. cost