A Rewriting-based Forwards Semantics for Maude-NPA

Santiago Escobar1 \quad Catherine Meadows2 \quad José Meseguer3
Sonia Santiago1

1Technical University of Valencia, Valencia, Spain
2Naval Research Laboratory, Washington DC, USA
3University of Illinois at Urbana-Champaign, USA

HotSoS, April 8, 2014
Outline

1. Introduction
2. Maude-NPA: A Peek Under the Hood
3. Forwards Semantics
4. Soundness and Completeness
5. Implementation
6. Conclusion
To prove properties of a program, we need to make use of some logical system.

Different components, different aspects, different properties of a program may require different logical systems.

- This is especially the case in security, a many-faceted problem.

We need to show these different logics can work together, and what is proved in one system remains true in another.

In this talk, I will show how applied this to a formal tool for cryptographic protocol analysis Maude-NPA.
Example: Diffie-Hellman Without Authentication

1. $A \rightarrow B : g^{N_A}$
2. $B \rightarrow A : g^{N_B}$
3. A and B compute $g^{N_A * N_B} = g^{N_B * N_A}$

Well-known attack

1. $A \rightarrow I_B : g^{N_A}$
2. $I_A \rightarrow B : g^{N_I}$
3. $B \rightarrow I_A : g^{N_B}$
4. $I_B \rightarrow A : g^{N_I}$

- A thinks she shares $g^{N_I * N_A}$ with B, but she shares it with I
- B thinks he shares $g^{N_I * N_A}$ with A, but he shares it with I
- Commutative properties of $*$ and fact that $(G^X)^Y = G^{X * Y}$ crucial to understanding both the protocol and the attack
Symbolic "Dolev-Yao" Model for Automated Cryptographic Protocol Analysis

- Start with a signature, giving a set of function symbols and variables
- For each role, give a program describing how a principal executing that role sends and receives messages
- Give a set of inference rules and equations the describing the deductions an intruder can make
 - E.g. if intruder knows K and $e(K, M)$, can deduce M, or;
 - $d(K, e(K, M)) = M$, where d is a decryption operator
- Assume that all messages go through intruder who can
 - Stop or redirect messages
 - Alter messages
 - Create new messages from already sent messages using inference rules
The Maude-NPA Tool

- A tool to **find or prove the absence** of attacks using **backwards search**
- Analyzes **infinite state systems**
 - **Active intruder**
 - **No** abstraction or **approximation** of nonces
 - If Maude-NPA finds path from initial state to insecure **attack** state, it is a genuine path
- **Unbounded** number of sessions
 - If Maude-NPA terminates without finding path no such path exists
 - Problem is in general undecidable, so Maude-NPA may not terminate
 - Uses search-space pruning mechanisms making termination more likely
- Supports a number of equational theories, including: cancellation (e.g. encryption-decryption), AC, exclusive-or, Diffie-Hellman, bounded associativity, homomorphic encryption over various theories, various combinations, working on including more
- **Executable semantics** based on rewrite rules
Executable Formal Semantics

- Logical system that can also be executed
 - In our case, as state-exploration-based cryptographic protocol analysis tool, Maude-NPA

- By proving things about the logical system, we can prove things about results of the execution

- If we want to make modifications to the tool, we make modifications to the semantics
 - Prove new semantics sound and/or complete to the old
 - Have applied this approach to extend the capabilities of Maude-NPA and prove that these extensions are sound and complete
What Happens When the Process Breaks?

- Require major changes to semantics in order to achieve the functionality we want
 - In our case, we needed to reverse the direction of the execution
 - In this talk, we show how we handled this problem
Outline

1. Introduction
2. Maude-NPA: A Peek Under the Hood
3. Forwards Semantics
4. Soundness and Completeness
5. Implementation
6. Conclusion
Important Tools Used by Maude-NPA: Equational Unification

- Given a signature Σ and an equational theory E, and two terms s and t built from Σ:

- A unifier of $s =_E t$ is a substitution σ to the variables in s and t s.t. σs can be transformed into σt by applying equations from E to σs and its subterms.

- Example: $\Sigma = \{d/2, e/2, m/0, k/0\}$, $E = \{d(K, e(K, X)) = X\}$. The substitution $\sigma = \{Z \mapsto e(T, Y)\}$ is a unifier of $d(T, Z)$ and Y.

- The set of most general unifiers of $s =_E t$ is the set Γ s.t. any unifier σ is of the form $\rho \tau$ for some ρ, and some τ in Γ.

- Example: $\{Z \mapsto e(T, Y), Y \mapsto d(T, Z)\}$ mgu’s of $d(T, Z)$ and Y.

- Given the theory, can have:
 - at most one mgu (empty theory)
 - a finite number (AC)
 - an infinite number (associativity)

- Problem can also be undecidable.
Important Tools Used by Maude-NPA: Rewrite Rules and Narrowing

- A rewrite theory \mathcal{R} is a triple $\mathcal{R} = (\Sigma, E, R)$, with:
 - Σ a signature
 - (Σ, R) a set of rewrite rules of the form $t \rightarrow s$
 - e.g. $e(K_A, N_A; X) \rightarrow e(K_B, X)$
 - E a set of equations of the form $t = s$

- Rewriting: If t is a ground term (no variables), $t \rightarrow_{\sigma, R, E} s$ if there are
 - a non-variable position $p \in \text{Pos}(t)$;
 - a rule $l \rightarrow r \in R$;
 - a substitution σ (modulo E) such that $t\theta =_E l$ and $s = \theta(t[r]_p)$

- Narrowing: If t is a symbolic term (may have variables) $t \sim_{\sigma, R, E} s$ if there are
 - a non-variable position $p \in \text{Pos}(t)$;
 - a rule $l \rightarrow r \in R$;
 - a unifier σ (modulo E) of $t|p =_E ?l$ such that $s = \sigma(t[r]_p)$.
Comparison of Rewriting and Narrowing

- In favor of narrowing
 - Narrowing wrt symbolic terms means you can handle a possibly infinite number of terms in one narrowing step
 - For that reason, good for reasoning about infinite state systems

- In favor of rewriting
 - Rewriting simpler and faster than narrowing
 - Software support for rewriting (in particular, Maude itself!)

- Conclusion: Use narrowing when it can most benefit you, rewriting otherwise
Protocols Specified Using Strand Spaces

- Maude-NPA uses concept of **strand spaces** due to Thayer, Herzog, and Gutmann (2001)
- A **strand** is a sequence of messages representing the actions of a principal executing a **role**, or of an intruder making a computation
 - A **negative** term represents a message received by a principal
 - A **positive** term represents a message sent by a principal
- Example: Initiator’s strand in DH

 :: r, r’ :: [nil , +(A ; B ; exp(g,n(A,r))), -(A ; B ; XE),
 +(e(exp(XE,n(A,r)),sec(A,r’))), nil]
- Example: Attacker exponentiation strand in DH

 :: nil :: [nil | -(GE), -(NS), +(exp(GE,NS)), nil]
- Note: Capital letters stand for logical variables, terms inside “::” are special variables used to construct nonces
A state is a set of strands plus the intruder knowledge (i.e., a set of terms)

1. Each strand is divided into past and future
 \[\[m_1^\pm, \ldots, m_i^\pm \mid m_{i+1}^\pm, \ldots, m_k^\pm \] \]
2. Initial strand \[[\text{nil} | m_1^\pm, \ldots, m_k^\pm] \], final strand \[[m_1^\pm, \ldots, m_k^\pm | \text{nil}] \]
3. The intruder knowledge contains terms \(m \notin \mathcal{I} \) and \(m \in \mathcal{I} \)
 \[\{ t_1 \notin \mathcal{I}, \ldots, t_n \notin \mathcal{I}, s_1 \in \mathcal{I}, \ldots, s_m \in \mathcal{I} \} \]
4. Initial intruder knowledge \(\{ t_1 \notin \mathcal{I}, \ldots, t_n \notin \mathcal{I} \} \),
 final intruder knowledge \(\{ s_1 \in \mathcal{I}, \ldots, s_m \in \mathcal{I} \} \)
State in which initiator has sent first message, attacker has learned that message, and attacker will learn secret value in future

\[
SS \& :: r, r' :: [\text{nil}, +(a; b; \text{exp}(g, n(a, r))) \mid \neg(a; b; XE), \neg (e(\text{exp}(XE, n(a, r)), \text{sec}(a, r'))), \text{nil}] \& \{\text{exp}(g, n(a, r) \text{ inI}, \text{sec}(a, r') \text{ notinI}, K}
\]

Note that it is possible (and expected) for states to contain variables

Since XE hasn’t been received yet, we don’t know what it is
Maude-NPA Backwards Semantics

- Expressed in terms of forwards executing rewrite rules
- Rewrite rule: a rule of the form \(\ell \rightarrow r \) meaning “replace expression \(\ell \) with expression \(r \)

 1. \(SS \& [L \mid M^- \mid L'] \& \{ M \in \mathcal{I}, K \} \rightarrow SS \& [L \mid M^- \mid L'] \& \{ M \in \mathcal{I}, K \} \)
 Moves input messages into the past

 2. \(SS \& [L \mid M^+ \mid L'] \& \{ K \} \rightarrow SS \& [L \mid M^+ \mid L'] \& \{ K \} \)
 Moves output message that are not read into the past

 3. \(SS \& [L \mid M^+ \mid L'] \& \{ M \notin \mathcal{I}, K \} \rightarrow SS \& [L \mid M^+ \mid L'] \& \{ M \in \mathcal{I}, K \} \)
 Joins output message with term in intruder knowledge.

 4. \(SS \& [l_1 \mid u^+] \& SS \& \{ u \notin \mathcal{I}, K \} \rightarrow \{ u \in \mathcal{I}, K \} \) where \([l_1 \mid u^+] \) is a prefix of a strand in the protocol specification
 Introduces new strand or prefix of strand, and joins output message with term in intruder knowledge.

- To obtain backwards semantics, just reverse the arrows!
Begin by specifying an attack state pattern

- An **attack state pattern** describes an insecure state and may contain variables.
- Example: Attack state in which responder B has finished execution of protocol, apparently with initiator A, but attacker knows the secret

\[
:: r :: [\text{nil}, -(a ; b ; XE), +(a ; b ; \exp(g,n(b,r))), \\
-(e(\exp(XE,n(b,r)),\sec(a,r')))) | \text{nil}] \\
| \sec(a,r') \in I
\]

- Use backward narrowing via the rewrite rules, to determine if an initial state can be reached.
- If you reach an initial state, you will have constructed a path to an instance of the attack pattern.
When We May Need Forward Execution

- **Practical Reasons**
 - Narrowing is powerful, but computationally expensive
 - If you execute forwards instead of backwards, states will contain no variables, and you can use rewriting instead of narrowing
 - Example: Suppose that you want to simulate protocol to see if it can reach a final state in absence of attackers
 - Narrowing is overkill

- **Theoretical Reasons**
 - In many cases, it is more natural to reason about forward rather than backwards execution
 - We found this when developing a theory of indistinguishability for Maude-NPA
Important: Forwards semantics must be sound and complete with respect to backwards semantics

- Allows us to switch between forwards and backwards semantics
- We use simulation to verify protocol specified correctly using forwards semantics, but verify security using backwards semantics
- We use forwards semantics to formulate our indistinguishability framework, but prove indistinguishability using backwards semantics
Why Can’t We Just Execute the Backwards Semantics Forwards?

- Maude-NPA already has a forwards semantics, obtained by reversing the backwards semantics
 - Why can’t we just use that and save ourselves a lot of work?
- Backwards semantics contains too much information about the future!
 - Initial state contains all strands and intruder knowledge used to reach the final state
 - Part of the strand after the bar may need to contain variables
 - This is problematic for rewriting
How We Represent States in the Forwards Semantics

- No variables allowed in state
- Only information about the past allowed, not the future
 - Terms $t \notin I$ can't appear, since they represent future knowledge of the intruder
 - Information after the bar in a strand can't appear, since it represents future execution
Some Rules in the Forwards Semantics

- Adding a positive term the intruder doesn’t know already to a strand

\[
\forall [u_1^+, \ldots, u_{j-1}^+, u_j^+, u_{j+1}^+, \ldots, u_n^+] \in P \land j > 1 : \\
\{ SS \& \{ IK \} \& [u_1^+, \ldots, u_{j-1}^+] \& \langle N \rangle \} \\
\rightarrow \\
\{ SS \& \{ u_j^+ \uparrow^M_N \in I, IK \} \& [u_1^+, \ldots, u_{j-1}^+, (u_j^+ \uparrow^M_N)^+] \& \langle M \rangle \} \\
\text{IF } (u_j^+ \uparrow^M_N \in I) \notin IK
\]

(1)

- Adding a strand that begins with a positive term the intruder doesn’t know already

\[
\forall [u_1^+, \ldots, u_n^+] \in P : \\
\{ SS \& \{ IK \} \& \langle N \rangle \} \rightarrow \{ SS \& [(u_1^+ \uparrow^M_N)^+] \& \{ IK \} \& \langle M \rangle \}
\]

(2)
Lifting Relation

Definition (Lifting relation)
Given a symbolic P-state S and a ground state s we say that s lifts to S, or that S instantiates to s with a grounding substitution $\theta : (Var(S) - \{SS, IK\}) \rightarrow T_{\Sigma}$, written $S >^\theta s$ iff

- for each strand :: $r_1, \ldots, r_m :: [u_1^\pm, \ldots u_{i-1}^\pm | u_i^\pm, \ldots, u_n^\pm]$ in S, there exists a strand $[v_1^\pm, \ldots v_{i-1}^\pm]$ in s such that $\forall 1 \leq j \leq i - 1$, $v_j =_{E_P} u_j^\theta$.

- for each positive intruder fact $w \in I$ in S, there exists a positive intruder fact $w' \in I$ in s such that $w' =_{E_P} w^\theta$, and

- for each negative intruder fact $w \notin I$ in S, there is no positive intruder fact $w' \in I$ in s such that $w' =_{E_P} w^\theta$.
Example of Lifting Relation

- **Symbolic state**

 $SS \land (r, r') :: [\text{nil}, +(a; b; \exp(g,n(a,r))) | -(a; b; XE), +\left(\exp(XE,n(a,r)), \sec(a,r')\right)), \text{nil}] \land \{\exp(g,n(a,r)) \in \mathcal{I}, \sec(a,r') \notin \mathcal{I}, K\}$

- **Ground State**

 $[+(a; b; \exp(g,n(a,1)))] \land \{\exp(g,n(a,1)) \in \mathcal{I}, a \in \mathcal{I}, b \in \mathcal{I}, a; b; \exp(g,n(a,1)) \in \mathcal{I}\}$

- **Lifting via θ**

 $\theta = \{r \rightarrow 1\}$
Soundness and Completeness Theorems

Theorem (Completeness)

*Given a protocol \mathcal{P}, two ground states s, s_0, a symbolic \mathcal{P}-state S, a substitution θ s.t. (i) s_0 is an initial state, (ii) $s_0 \rightarrow^n s$, and (iii) $S >^\theta s$ then there exist a symbolic initial \mathcal{P}-state S_0, two substitutions μ and θ', and $k \leq n$, s.t. $S_0 \leftarrow^k_\mu S$, and $S_0 >^\theta' s_0$.***

Theorem (Soundness)

Given a protocol \mathcal{P}, two symbolic \mathcal{P}-states S_0, S', an initial ground state s_0 and a substitution θ s.t. (i) S_0 is a symbolic initial state, and (ii) $S_0 \leftarrow^ S'$, and (iii) $S_0 >^\theta s_0$ then there exist a ground state s' and a substitution θ', s.t. (i) $s_0 \rightarrow^* s'$, and (ii) $S' >^\theta' s'$.***
Proof of Soundness and Completeness

- (Lifting Lemma) Given rewriting step \(s' \rightarrow s \) and lifting relation \(S \triangleright \theta s \) we can complete the diagram with \(S' \) as follows:

\[
\begin{array}{c}
S' & \sim & S \\
\parallel & \downarrow & \downarrow \\
\triangleleft \triangleright & \triangleright \theta & \triangleright \theta \\
\downarrow & \downarrow & \downarrow \\
s' & \rightarrow & s
\end{array}
\]

Soundness: Given a forward rewriting sequence iterate lifting lemma to get corresponding backwards narrowing sequence

- (Grounding Lemma) Given narrowing step \(S \leftarrow \sim S' \) and lifting relation \(S \triangleright \theta s \) we can complete the diagram with an \(s' \) as follows:

\[
\begin{array}{c}
S & \sim & S' \\
\triangleright \theta & \parallel & \parallel \triangleright \theta \\
\downarrow & \downarrow & \downarrow \\
s & \rightarrow & s'
\end{array}
\]

Completeness: Given a backwards narrowing sequence iterate grounding lemma to get corresponding forwards rewriting sequence
Implemented rewriting-based forward semantics in Maude

Maude’s support for rewriting made it possible to do this very quickly

Implemented some heuristic state space reduction techniques to reduce state space explosion
 - Plan to investigate these further in the future, in particular adapting Maude-NPA’s state space reduction techniques to a forwards setting
 - Expect soundness and completeness result to help us here

Applied it to various protocols in the literature, tool was able to reproduce attacks found by Maude-NPA
Conclusion

- We started out wanting a theoretical tool to help us reason about indistinguishability, but we wound up with:
 - A novel executable semantics for model-checking cryptographic protocols
 - A new logical foundation for Maude-NPA, designed for model-checking
 - The beginnings of a new crypto protocol model-checker

- And we got a new theoretical tool to help us reason about indistinguishability!