Control improvisation in vehicle modeling and control

Jin Ge1, Richard M. Murray1, Bastian Schürmann2, and Matthias Althoff2

1. Department of Computing and Mathematical Sciences, California Institute of Technology. 2. Department of Informatics, Technische Universität München.

Control improvisation

Given a finite alphabet Σ, find a distribution $D: \Sigma^* \rightarrow [0,1]$:

- **Hard constraint** H \quad $P_{\Sigma}(\sigma) \in L(H) \wedge \sigma \in D = 1$
- **Soft constraint** S \quad $P_{\Sigma}(\sigma) \in L(S) \wedge \sigma \in D \geq 1 - \xi$

\[\forall \sigma \in L(H), \quad D(\sigma) \leq \rho \]

\[H = \{ \text{strings of length 3 that have no consecutive 1's} \} \]

\[S = \{ \text{strings with Hamming distance no greater than 1 from 001} \} \]

Example:

\[
\begin{align*}
\Sigma &= \{0, 1\}, \quad \xi = 1, \quad \rho = \frac{1}{2} \\
H &= \{ \text{strings of length 3 that have no consecutive 1's} \} \\
S &= \{ \text{strings with Hamming distance no greater than 1 from 001} \}
\end{align*}
\]

Applications:

- Composing music
- Lighting control mimicking human behavior
- Robot surveillance
- Human driving behavior
- ...

Voluntary lane-change decision-making

Train Markov traffic models using traffic data

- Statistical traffic data
- Vehicle car-following data
- Human lane-change data

Lane-change environment model for the motion of neighboring cars (Markov Decision Process)

Traffic scenario assumptions:

- Hard constraints $v \geq 0, \ h > 0$
- Soft constraints
 \[P_v(\hat{v}(t+1) - \hat{v}(t) < \Delta v) \geq 1 - \xi_v \]
 \[P_v(\hat{v}(t) - \hat{v}(0) < \Delta v) \geq 1 - \xi_v \]
 \[P_h(\hat{h}(t) - \hat{h}(0) < \Delta h) \geq 1 - \xi_h \]
- Randomness

Lane-change behavior specifications:

- Hard constraints
- Satisfy safety & incentive conditions
- Soft constraints
- Number of lane changes during a period of time
 \[P(\hat{n}_l - N_l < \Delta N_l) > 1 - \xi_n \]
- Time between two consecutive lane changes
 \[P(\tilde{\Delta} \hat{h}_l > 1 - \xi_h) \]
- Randomness

Histogram for lane-change opportunities during stop-and-go traffic

Risk-aware motion planning

Automated vehicle (robot) X_R

Non-interactive vehicles (environment) X_E

Interactive vehicles (humans) X_H

Kinematic model

Motion primitives

Maneuver automata

Human driving model

- Hard constraints (stay on the road, and drive forward)
- Soft constraints (favor actions with “low enough” cost)
- Randomness (action sequences are seldom repeated)

Optimal policy for the automated vehicle

Example:

\[
\begin{align*}
\alpha^* &= \arg \min_{\alpha} \sum_{t=0}^{T} \text{Cost}(x(t), \alpha) \\
&\text{subject to} \quad x(0), x(T) \in \mathbb{X} \\
&\text{with} \quad \mathbb{X} = \{ x : x(0), x(T) \in \mathbb{X} \}
\end{align*}
\]

References