INFORMATION AND COMPUTATION HIERARCHY FOR SMART GRIDS

Cornell University: Lang Tong (PI), Ken Birman, Tim Mount, Bob Thomas
U.C. Berkeley: Pravin Varaiya
Georgia State U: Wenzhan Song
The oldest, largest, & most complex CPS

Possibly the oldest, the largest and one of the most complex CPS

- ~10,000 plants, ~15,000 generators
- Miles of lines and costly equipment
Emerging operating regimes

- Greater renewable (stochastic and varying) and distributed generation
- Large scale consumer participation through demand response
- Increasing reliance on cyber infrastructure transmission and distribution. Security and privacy!
- Disruptive technologies in storage and electric vehicles
Technology drivers

- **PMUs**: high resolution measurements for enhanced observability in time and space.
- **Smart meters**: enhanced observability in the distribution network
- **Smart wireless devices and apps**: empower user participation.
- **Cloud computing**: unprecedented computation power and storage capability

Possibly the oldest, the largest, and one of the most complex CPS

- ~10,000 plants, ~15,000 generators
- Miles of lines and costly equipment
What makes the future grid different....

Stochasticity:
- Non-Gaussian, long range dependencies and heavy tail phenomenon
- Rare events with enormous cost
- Contingencies with uncountable # scenarios.

Big data over cyber infrastructure:
- Cross-network, multi-scale, multi-modality, locational, bad, and malicious
- Impractical to communicate, no place to store, overwhelming in size and complexity, difficult to learn, and possibly dangerous to use

Possibly the oldest, the largest, and one of the most complex CPS
- ~10,000 plants, ~15,000 generators
- Miles of lines and costly equipment
Information and computation hierarchy

- Networking architecture
 Public and private infrastructure

- Computation architecture
 HPC, cloud

- Quality of service:
 Speed, delay, reliability, risk (not just in average)

- Robustness, tolerance, resilience
 missing packets, inconsistency, bad and malicious data…

- Complexity, costs, security, privacy, etc.
Information hierarchy in space

- Information hierarchy in space addresses the problem of collecting and disseminating information to a large geographical area.

- **CAP:** a fundamental limit on distributed reliable processing.
 - **Consistency:** see the same data at the same time
 - **Availability:** all response upon request
 - **Partition tolerance:** fault tolerant (e.g. N-1 contingencies)

- **Locality:** information generated at different locations may be inconsistent, out of date, erroneous, even malicious.
Example: cybersecurity of smart grid
Man-in-the-middle attack

Attack objectives:

- **mislead** the control about the topology and the state of the network;
- make the attack **undetectable**
Impacts of data and topology attacks

- Data attack changes LMP via state estimates.
- Topology attack changes LMP directly.
Topology attacks are more powerful

- Change a few (<5) meter data and use only local information!
Against joint topology & data attacks

Making attack detectable by protecting
- ~30% meters (IEEE 14 bus)
- ~25% meters (IEEE 118 bus)
Information hierarchy in time

- Information hierarchy in time addresses the problem of what kind of information is required and by what time decisions have to be made.

- Time sensitive decisions are essential for the integration of stochastic generations and demand response.

- The value of information diminishes if it is not delivered in time. Is TCP/IP framework good enough?
Example: Risk Limiting Dispatch

Existing modus operandi (day ahead + real time)

- Decoupled dispatch
- Static reliability criteria
- Limited recourse opportunities
- Demand treated as inelastic

CAISO study: with 33% renewable

- Regulation capacity: 227MW \rightarrow 1,135MW.
- Load following capacity: 2,292MW \rightarrow 4,423MW.
Example: risk limiting dispatch

- **Structure:** intra-day multi stage energy purchase and sales
- **Information structure:** all observation prior to decision time
- **Criteria:** dynamic reliability and risk limits
- **Optimal policy:** Dual threshold: “buy-hold-sell”
Example: Risk Limiting Dispatch

Related references

GridCloud: national scale grid monitoring

- **Goal**: cloud scale robust high performance monitoring infrastructure
- **Challenges**: CAP, Cyber security and privacy.
- **This project**:
 - Develop cloud infrastructure suitable for large scale monitoring and control.
 - Optimized tradeoffs
System testbed: SmartGridLab
Summary remarks: Not just a CPS

The grid is a Social Economic CPS!

CPS (circa 1950) → Economic (circa 1980) → Social (today!)

- Uncertainties are fundamental. Over provision may not be the right approach; imperfections and uncertainties must be part of the design.
- Time is critical. Deadline matters. Best effort may not be good enough.
- Data (big, bad, malicious) represent fundamental challenges for the future grid.