Practical Secure Two-Party Computation: Techniques, Tools, and Applications

Challenge:
- Enable efficient computation on data held by two parties, without revealing anything about one party’s data to the other.

Solution:
- The *theory* of secure computation has been studied for decades.
- We are developing new techniques to vastly improve *efficiency* while retaining provable security.

Scientific Impact:
- Security against *malicious* adversaries can be achieved with significantly better efficiency than previously known.
- This brings secure two-party computation even closer to practice.

Broader Impact:
- Potential applications in finance, data mining, DNA testing, and more.
- Interest from DoD, NIST, OFR.
- Several startups exploring commercialization.

CNS-1111599, University of Maryland in collaboration with UVA and Indiana University. jkatz@cs.umd.edu