HACSAW: A Trusted Framework for Cyber Situational Awareness
Outline

- HPCMP Ecosystem
- Cyber Situational Awareness (SA) Initiative
- HACSAW – The Big Picture
 - Data Repository
 - Development Workflow
- Overview of Operational Use Cases
- Summary
- Questions
HPCMP Ecosystem

A technology-led, innovation-focused program committed to extending HPC to address the DoD’s most significant challenges.

DoD Supercomputing Resource Centers (DSRCs)
- U.S. Air Force Research Laboratory DSRC
- U.S. Army Research Laboratory DSRC
- U.S. Army Engineer Research and Development Center DSRC
- Maui High Performance Computing Center DSRC
- US Navy DSRC

Networking and Security
- Defense Research & Engineering Network (DREN)
- Computer Network Defense, Security R&D, and Security Integration

Software Applications
- Core Software
- Computational Environments
- Education and Training
- HPC User Support

Results

Acquisition Engineering

Test and Evaluation

Science and Technology

Distribution A: Approved for Public release; distribution is unlimited.
Cyber Situational Awareness Initiative

- Executive Steering Group “… examine the applicability of HPC to cyber situational awareness (SA)”
- HPCMP is well-positioned to leverage HPC systems to address complex cybersecurity problems
 - World-class computational resources leveraged by the RDT&E community
 - Leading-edge software applications for computational analysis capabilities
 - National research and engineering network – DREN
- Multi-disciplinary, multi-year project leveraging expertise from HPCMP (e.g., Security, Networking, Centers, Software Applications) and external collaborators
HACSAW – The Big Picture

Data Sources

- Cyber Operational Attributes
 - Host Based Security System (HBSS)
 - Multi Router Traffic Grapher (MRTG) / Network Flow Statistics
 - Cybersecurity Environment for Detection, Analysis, & Reporting (CEDAR)
 - Assured Compliance Assessment Solution (ACAS)
 - Rapid Audit of Unix (RADIX)

Ingest

- Apache Kafka
 - Data ingest & message passing

Index

- Apache Spark
 - Parallel processing of events

Assess

- ElasticSearch
 - Index, retrieval, & analysis of events

Query

- Kibana
 - Analytical Visualization

Analyze

- JupyterLab
 - Scientific workbench

Sharing & Collaboration

Cyber Risk & Event Analysis

Cyber Threat Analysis

Alert

Detect

Monitor

Results

Cyber SA

Mission Essential Tasks (MET)
Data Repository

Most comprehensive cybersecurity data set available to DoD R&D community

- Collection of data sources from Internet Access Points (IAPs) to regional Service Delivery Points (SDPs) to the host-level
- Non-anonymized data
- Contains operational attributes
- Rapid acceleration and exponential growth in size and complexity
1. DATA EXPLORATION
Identify relevant data sources and its underlying structure, purpose, and usefulness. In this stage, collaborators will exercise APIs and ontology to be used in the initial analytic development.

2. INITIAL DEVELOPMENT
Using the data analytics environment with HACSAW, collaborators will begin initial development of their proposed analytics by working with real HPC data.

3. DEPLOY & COLLECT
Once initial development has been completed, collaborators will deploy their analytic against real world data. Results will be collected and provided to collaborators in near-real time.

4. REFINE & MEASURE
Collaborators will refine their analytic and benchmark it’s accuracy and overall performance. At this point, collaborators will have a stable and HPC-ready analytic.
5. Initial Evaluation
Verify the results obtained from the prototype system warrant further evaluation on an HPC system. Verify that better or faster results could be obtained with more resources and the algorithm will work at scale.

6. HPC Development
Collaborators will port the application code to run effectively on the HPC machine. This includes an analysis of needed data and working with data owners to ensure data availability on the HPC.

7. Refine & Measure
Once application porting has been completed, collaborators will deploy their analytic against large scale real data. This will take place in a batch environment, allowing larger scale tests but with a slower response.

8. Final Evaluation
At this point the code has been fully developed and vetted on an HPC and is ready to move into production.
Overview of Operational Use Cases

VARR
- Vulnerability Awareness and Recommended Risk Remediation
- Provide **risk estimates** and **recommend courses of action** that maximize risk reduction using **modeling and simulation** techniques

MADHAT
- Multi-dimensional Anomaly Detection fusing HPC, Analytics and Tensors
- Identify **malicious network behavior** using **tensor decompositions** optimized for HPC environments with **deep learning** techniques

GALILEO
- Generalized Low-Entropy Mixture Model
- Enable **streaming anomaly detection** and near-neighbor detection of known malicious behavior using **clustering** techniques
Summary

• **Reduce barriers to data and computing resources**

• **Beginning of the effort**
 – Initial research results expected in June 2018
 – Seeking transition partners

• **Engaging broader community**
 – Novel research ideas
 – Development of benchmarks
Questions?

Leslie C. Leonard, PhD
Cybersecurity Research Lead
Leslie.Leonard@hpc.mil

William J. Glodek
william.j.glodek.ctr@mail.mil
Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>TERM</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>API</td>
<td>Application Program Interface</td>
</tr>
<tr>
<td>DoD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>DREN</td>
<td>Defense Research and Engineering Network</td>
</tr>
<tr>
<td>ERDC</td>
<td>Engineer Research and Development Center</td>
</tr>
<tr>
<td>ESG</td>
<td>Executive Steering Group</td>
</tr>
<tr>
<td>HACSAW</td>
<td>HPC Architecture for Cyber Situational Awareness</td>
</tr>
<tr>
<td>HPC</td>
<td>High Performance Computing</td>
</tr>
<tr>
<td>HPCMP</td>
<td>High Performance Computing Modernization Program</td>
</tr>
<tr>
<td>HTTP</td>
<td>Hyper Text Transfer Protocol</td>
</tr>
<tr>
<td>IAP</td>
<td>Internet Access Point</td>
</tr>
<tr>
<td>MET</td>
<td>Mission Essential Task</td>
</tr>
<tr>
<td>SA</td>
<td>Situational Awareness</td>
</tr>
<tr>
<td>SDP</td>
<td>Service Delivery Point</td>
</tr>
</tbody>
</table>