Biblio
Recent years have seen significant advancement in the field of formal network verification. Tools have been proposed for offline data plane verification, real-time data plane verification and configuration verification under arbitrary, but static sets of failures. However, due to the fundamental limitation of not treating the network as an evolving system, current verification platforms have significant constraints in terms of scope. In real-world networks, correctness policies may be violated only through a particular combination of environment events and protocol actions, possibly in a non-deterministic sequence. Moreover, correctness specifications themselves may often correlate multiple data plane states, particularly when dynamic data plane elements are present. Tools in existence today are not capable of reasoning about all the possible network events, and all the subsequent execution paths that are enabled by those events. We propose Plankton, a verification platform for identifying undesirable evolutions of networks. By combining symbolic modeling of data plane and control plane with explicit state exploration, Plankton
performs a goal-directed search on a finite-state transition system that captures the behavior of the network as well as the various events that can influence it. In this way, Plankton can automatically find policy violations that can occur due to a sequence of network events, starting from the current state. Initial experiments have successfully predicted scenarios like BGP Wedgies.
Highly configurable systems allow users to tailor software to specific needs. Valid combinations of configuration options are often restricted by intricate constraints. Describing options and constraints in a variability model allows reasoning about the supported configurations. To automate creating and verifying such models, we need to identify the origin of such constraints. We propose a static analysis approach, based on two rules, to extract configuration constraints from code. We apply it on four highly configurable systems to evaluate the accuracy of our approach and to determine which constraints are recoverable from the code. We find that our approach is highly accurate (93% and 77% respectively) and that we can recover 28% of existing constraints. We complement our approach with a qualitative study to identify constraint sources, triangulating results from our automatic extraction, manual inspections, and interviews with 27 developers. We find that, apart from low-level implementation dependencies, configuration constraints enforce correct runtime behavior, improve users' configuration experience, and prevent corner cases. While the majority of constraints is extractable from code, our results indicate that creating a complete model requires further substantial domain knowledge and testing. Our results aim at supporting researchers and practitioners working on variability model engineering, evolution, and verification techniques.
Risk homeostasis theory claims that individuals adjust their behaviors in response to changing variables to keep what they perceive as a constant accepted level of risk [8]. Risk homeostasis theory is used to explain why drivers may drive faster when wearing seatbelts. Here we explore whether risk homeostasis theory applies to end-user security behaviors. We use observed data from over 200 participants in a longitudinal in-situ study as well as survey data from 249 users to attempt to determine how user security behaviors and attitudes are affected by the presence or absence of antivirus software. If risk compensation is occurring, users might be expected to behave more dangerously in some ways when antivirus is present. Some of our preliminary data suggests that risk compensation may be occurring, but additional work with larger samples is needed.
The Security Behavior Intentions Scale (SeBIS) measures the computer security attitudes of end-users. Because intentions are a prerequisite for planned behavior, the scale could therefore be useful for predicting users' computer security behaviors. We performed three experiments to identify correlations between each of SeBIS's four sub-scales and relevant computer security behaviors. We found that testing high on the awareness sub-scale correlated with correctly identifying a phishing website; testing high on the passwords sub-scale correlated with creating passwords that could not be quickly cracked; testing high on the updating sub-scale correlated with applying software updates; and testing high on the securement sub-scale correlated with smartphone lock screen usage (e.g., PINs). Our results indicate that SeBIS predicts certain computer security behaviors and that it is a reliable and valid tool that should be used in future research.
Build systems contain a lot of configuration knowledge about a software system, such as under which conditions specific files are compiled. Extracting such configuration knowledge is important for many tools analyzing highly-configurable systems, but very challenging due to the complex nature of build systems. We design an approach, based on SYMake, that symbolically evaluates Makefiles and extracts configuration knowledge in terms of file presence conditions and conditional parameters. We implement an initial prototype and demonstrate feasibility on small examples.
Access policies are hard to express in existing programming languages. However, their accurate expression is a prerequisite for many of today's applications. We propose a new language that uses classes, first-class relationships, and first-class states to express access policies in a more declarative and fine-grained way than existing solutions allow.
Security requirements patterns represent reusable security practices that software engineers can apply to improve security in their system. Reusing best practices that others have employed could have a number of benefits, such as decreasing the time spent in the requirements elicitation process or improving the quality of the product by reducing product failure risk. Pattern selection can be difficult due to the diversity of applicable patterns from which an analyst has to choose. The challenge is that identifying the most appropriate pattern for a situation can be cumbersome and time-consuming. We propose a new method that combines an inquiry-cycle based approach with the feature diagram notation to review only relevant patterns and quickly select the most appropriate patterns for the situation. Similar to patterns themselves, our approach captures expert knowledge to relate patterns based on decisions made by the pattern user. The resulting pattern hierarchies allow users to be guided through these decisions by questions, which introduce related patterns in order to help the pattern user select the most appropriate patterns for their situation, thus resulting in better requirement generation. We evaluate our approach using access control patterns in a pattern user study.
Very often in the software development life cycle, security is applied too late or important security aspects are overlooked. Although the use of security patterns is gaining popularity, the current state of security requirements patterns is such that there is not much in terms of a defining structure. To address this issue, we are working towards defining the important characteristics as well as the boundaries for security requirements patterns in order to make them more effective. By examining an existing general pattern format that describes how security patterns should be structured and comparing it to existing security requirements patterns, we are deriving characterizations and boundaries for security requirements patterns. From these attributes, we propose a defining format. We hope that these can reduce user effort in elicitation and specification of security requirements patterns.
Homotopy type theory is an interpretation of Martin-L¨of’s constructive type theory into abstract homotopy theory. There results a link between constructive mathematics and algebraic topology, providing topological semantics for intensional systems of type theory as well as a computational approach to algebraic topology via type theory-based proof assistants such as Coq. The present work investigates inductive types in this setting. Modified rules for inductive types, including types of well-founded trees, or W-types, are presented, and the basic homotopical semantics of such types are determined. Proofs of all results have been formally verified by the Coq proof assistant, and the proof scripts for this verification form an essential component of this research.
In our previous work we showed that for Fedora, under normal operational conditions, security problem discovery appears to be a random process. While in the case of Fedora, and a number of other open source products, classical reliability models can be adapted to estimate the number of residual security problems under “normal” operational usage (not attacks), the predictive ability of the model is lower for security faults due to the rarity of security events and because there appears to be no real security reliability growth. The ratio of security to non-security faults is an indicator that the process needs improving, but it also may be leveraged to assess vulnerability profile of a release and possibly guide testing of its next version. We manually analyzed randomly sampled problems for four different versions of Fedora and classified them into security vulnerability categories. We also analyzed the distribution of these problems over the software’s lifespan and we found that they exhibit a symmetry which can perhaps be used in estimating the number of residual security problems in the software. Based on our work, we believe that an approach to vulnerability elimination based on a combination of “classical” and some non-operational “bounded” high-assurance testing along the lines discussed in may yield good vulnerability elimination results, as well as a way of estimating vulnerability level of a release. Classical SRE methods, metrics and models can be used to track both non-security and security problem detection under normal operational profile. We can then model the reliability growth, if any, and estimate the number of residual faults by estimating the lower and upper bounds on the total number of faults of a certain type. In production, there may be a simpler alternative. Just count the vulnerabilities and project over the next period assuming constant vulnerability discovery rate. In testing phase, to accelerate the process, one might leverage collected vulnerability information to generate non-operational test-cases aimed at vulnerability categories. The observed distributions of security problems reported under normal “operational” usage appear to support the above approach – i.e., what is learned say in the first x weeks can them be leveraged in selecting test cases in the next stage. Similarly, what is learned about a product Y weeks after its release may be very indicative of its vulnerability profile for the rest of its life given the assumption of constant vulnerability discovery rate.
The process of software development and evolution has proven difficult to improve. For example, well documented security issues such as SQL injection (SQLi), after more than a decade, still top most vulnerability lists. Quantitative security process and quality metrics are often subdued due to lack of time and resources. Security problems are hard to quantify and even harder to predict or relate to any process improvement activity. The goal of this thesis is to assess usefulness of “classical” software reliability engineering (SRE) models in the context of open source software security, the conditions under which they may be useful, and the information that they can provide with respect to the security quality of a software product. We start with security problem reports for open source Fedora series of software releases.We illustrate how one can learn from normal operational profile about the non-operational processes related to security problems. One aspect is classification of security problems based on the human traits that contribute to the injection of problems into code, whether due to poor practices or limited knowledge (epistemic errors), or due to random accidental events (aleatoric errors). Knowing the distribution aids in development of an attack profile. In the case of Fedora, the distribution of security problems found post-release was consistent across four different releases of the software. The security problem discovery rate appears to be roughly constant but much lower than the initial non-security problem discovery rate. Previous work has shown that non-operational testing can help accelerate and focus the problem discovery rate and that it can be successfully modeled.We find that some classical reliability models can be used with success to estimate the residual number of security problems, and through that provide a measure of the security characteristics of the software. We propose an agile software testing process that combines operational and non-operational (or attack related) testing with the intent of finding more security problems faster.
We have been studying extension of the classical Software Reliability Engineering (SRE) methodology into the security space. We combine “classical” reliability modeling, when applied to reported vulnerabilities found under “normal” operational profile conditions, with safety oriented fault management processes. We illustrate with open source Fedora software.
Our initial results appear to indicate that generation of a repeatable automated test-strategy that would explicitly cover the “top 25” security problems may help considerably – eliminating perhaps as much as 50% of the field observable problems. However, genuine aleatoric and more process oriented incomplete analysis and design flaws remain. While we have made some progress in identifying focus areas, a number of questions remain, and we continue working on them.
Application Programming Interfaces (APIs) often define object
protocols. Objects with protocols have a finite number of states and
in each state a different set of method calls is valid. Many researchers
have developed protocol verification tools because protocols are notoriously
difficult to follow correctly. However, recent research suggests that
a major challenge for API protocol programmers is effectively searching
the state space. Verification is an ineffective guide for this kind of
search. In this paper we instead propose Plaiddoc, which is like Javadoc
except it organizes methods by state instead of by class and it includes
explicit state transitions, state-based type specifications, and rich state
relationships. We compare Plaiddoc to a Javadoc control in a betweensubjects
laboratory experiment. We find that Plaiddoc participants complete
state search tasks in significantly less time and with significantly
fewer errors than Javadoc participants.
Process-level races are endemic in modern systems. These races are difficult to debug because they are sensitive to execution events such as interrupts and scheduling. Unless a process interleaving that can result in the race can be found, it cannot be reproduced and cannot be corrected. In practice, however, the number of interleavings that can occur among processes in practice is large, and the patterns of interleavings can be complex. Thus, approaches for reproducing process-level races to date are often ineffective. In this paper, we present RRF, a race reproduction framework that can help software engineers reproduce reported process-level races, enabling them to potentially debug these races. RRF performs a hybrid analysis by leveraging existing static program analysis tools, dynamic kernel event reporting tools, and yield points to provide the observability and controllability needed to reproduce races. We conducted an empirical study to evaluate RRF; our results show that RRF can be effective for reproducing races.