Visible to the public Biblio

Filters: First Letter Of Last Name is Y  [Clear All Filters]
Conference Paper
Darya Melicher(Kurilova), Yangqingwei Shi, Alex Potanin, Jonathan Aldrich.  2017.  A Capability-Based Module System for Authority Control. European Conference on Object-Oriented Programming (ECOOP).

The principle of least authority states that each component of the system should be given authority to access only the information and resources that it needs for its operation. This principle is fundamental to the secure design of software systems, as it helps to limit an application’s attack surface and to isolate vulnerabilities and faults. Unfortunately, current programming languages do not provide adequate help in controlling the authority of application modules, an issue that is particularly acute in the case of untrusted third-party extensions. In this paper, we present a language design that facilitates controlling the authority granted to each application module. The key technical novelty of our approach is that modules are firstclass, statically typed capabilities. First-class modules are essentially objects, and so we formalize our module system by translation into an object calculus and prove that the core calculus is typesafe and authority-safe. Unlike prior formalizations, our work defines authority non-transitively, allowing engineers to reason about software designs that use wrappers to provide an attenuated version of a more powerful capability. Our approach allows developers to determine a module’s authority by examining the capabilities passed as module arguments when the module is created, or delegated to the module later during execution. The type system facilitates this by identifying which objects provide capabilities to sensitive resources, and by enabling security architects to examine the capabilities passed into and out of a module based only on the module’s interface, without needing to examine the module’s implementation code. An implementation of the module system and illustrative examples in the Wyvern programming language suggest that our approach can be a practical way to control module authority.

Yu Wang, University of Illinois at Urbana-Champaign, Matthew Hale, University of Illinois at Urbana-Champaign, Magnus Egerstedt, University of Illinois at Urbana-Champaign, Geir Dullerud, University of Illinois at Urbana-Champaign.  2017.  Differentially Private Objective Functions in Distributed Cloud-based Optimization. 20th World Congress of the International Federations of Automatic Control (IFAC 2017 World Congress).

Abstract—In this work, we study the problem of keeping the objective functions of individual agents "-differentially private in cloud-based distributed optimization, where agents are subject to global constraints and seek to minimize local objective functions. The communication architecture between agents is cloud-based – instead of communicating directly with each other, they oordinate by sharing states through a trusted cloud computer. In this problem, the difficulty is twofold: the objective functions are used repeatedly in every iteration, and the influence of  erturbing them extends to other agents and lasts over time. To solve the problem, we analyze the propagation of perturbations on objective functions over time, and derive an upper bound on them. With the upper bound, we design a noise-adding mechanism that randomizes the cloudbased distributed optimization algorithm to keep the individual objective functions "-differentially private. In addition, we study the trade-off between the privacy of objective functions and the performance of the new cloud-based distributed optimization algorithm with noise. We present simulation results to numerically verify the theoretical results presented.

Yutaka Tsutano, Shakthi Bachala, Witawas Srisa-an, Gregg Rothermel, Jackson Dinh.  2017.  An Efficient, Robust, and Scalable Approach for Analyzing Interacting Android Apps. 39th International Conference on Software Engineering.

When multiple apps on an Android platform interact, faults and security vulnerabilities can occur. Software engineers need to be able to analyze interacting apps to detect such problems. Current approaches for performing such analyses, however, do not scale to the numbers of apps that may need to be considered, and thus, are impractical for application to realworld scenarios. In this paper, we introduce JITANA, a program analysis framework designed to analyze multiple Android apps simultaneously. By using a classloader-based approach instead of a compiler-based approach such as SOOT, JITANA is able to simultaneously analyze large numbers of interacting apps, perform on-demand analysis of large libraries, and effectively analyze dynamically generated code. Empirical studies of JITANA show that it is substantially more efficient than a state-of-theart approach, and that it can effectively and efficiently analyze complex apps including Facebook, Pokemon Go, and Pandora ´ that the state-of-the-art approach cannot handle.

Junjie Qian, Witawas Srisa-an, Du Li, Hong Jiang, Sharad Seth, Yaodong Yang.  2015.  SmartStealing: Analysis and Optimization of Work Stealing in Parallel Garbage Collection for Java VM.. Principles and Practice of Programming in Java (PPPJ).

Parallel garbage collection has been used to speedup the collection process on multicore architectures. Similar to other parallel techniques, balancing the workload among threads is critical to ensuring good overall collection performance. To this end, work stealing is employed by the current stateof-the-art Java Virtual Machine, OpenJDK, to keep GC threads from idling during a collection process. However, we found that the current algorithm is not efficient. Its usage can often cause GC performance to be worse than when work stealing is not used. In this paper, we identify three factors that affect work stealing efficiency: determining tasks that can benefit from stealing, frequency with which to attempt stealing, and performance impacts of failed stealing attempts. Based on this analysis, we propose SmartStealing, a new algorithm that can automatically decide whether to attempt stealing at a particular point during execution. If stealing is attempted, it can efficiently identify a task to steal from. We then compare the collection performances when (i) the default work stealing algorithm is used, (ii) work stealing is not used at all, and (iii) the SmartStealing approach is used. Without modifying the remaining garbage collection system, the evaluation result shows that SmartStealing can reduce the parallel GC execution time for 19 of the 21 benchmarks. The average reduction is 50.4% and the highest reduction is 78.7%. We also investigate the performances of SmartStealing on NUMA and UMA architectures.

Conference Proceedings
Yu Xianqing, Peng Ning, Mladen A. Vouk.  2015.  Enhancing security of Hadoop in a public cloud. 6th International Conference Information and Communication Systems (ICICS). :pp.38–43.

Hadoop has become increasingly popular as it rapidly processes data in parallel. Cloud computing gives reli- ability, flexibility, scalability, elasticity and cost saving to cloud users. Deploying Hadoop in cloud can benefit Hadoop users. Our evaluation exhibits that various internal cloud attacks can bypass current Hadoop security mechanisms, and compromised Hadoop components can be used to threaten overall Hadoop. It is urgent to improve compromise resilience, Hadoop can maintain a relative high security level when parts of Hadoop are compromised. Hadoop has two vulnerabilities that can dramatically impact its resilience. The vulnerabilities are the overloaded authentication key, and the lack of fine-grained access control at the data access level. We developed a security enhancement for a public cloud-based Hadoop, named SEHadoop, to improve the compromise resilience through enhancing isolation among Hadoop components and enforcing least access privilege for Hadoop processes. We have implemented the SEHadoop model, and demonstrated that SEHadoop fixes the above vulnerabilities with minimal or no run-time overhead, and effectively resists related attacks.

Marwan Abi-Antoun, Yibin Wang, Ebrahim Khalaj, Andrew Giang, Vaclav Rajlich.  2015.  Impact Analysis based on a Global Hierarchical Object Graph. 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER).

During impact analysis on object-oriented code, statically extracting dependencies is often complicated by subclassing, programming to interfaces, aliasing, and collections, among others. When a tool recommends a large number of types or does not rank its recommendations, it may lead developers to explore more irrelevant code. We propose to mine and rank dependencies based on a global, hierarchical points-to graph that is extracted using abstract interpretation. A previous whole-program static analysis interprets a program enriched with annotations that express hierarchy, and over-approximates all the objects that may be created at runtime and how they may communicate. In this paper, an analysis mines the hierarchy and the edges in the graph to extract and rank dependencies such as the most important classes related to a class, or the most important classes behind an interface. An evaluation using two case studies on two systems totaling 10,000 lines of code and five completed code modification tasks shows that following dependencies based on abstract interpretation achieves higher effectiveness compared to following dependencies extracted from the abstract syntax tree. As a result, developers explore less irrelevant code.

Lichao Sun, Zhiqiang Li, Qiben Yan, Witawas Srisa-an, Yu Pan.  2016.  SigPID: Significant Permission Identification for Android Malware Detection. 11th International Conference on Malicious and Unwanted Software (MALCON 2016).

A recent report indicates that a newly developed mali- cious app for Android is introduced every 11 seconds.  To combat this alarming rate of malware creation,  we need a scalable malware detection approach that is effective and efficient. In this paper, we introduce SIGPID, a malware detection system based on permission  analysis to cope with the rapid increase in the number of Android malware. In- stead of analyzing all 135 Android permissions, our ap- proach applies 3-level pruning by mining the permission data to identify only significant permissions that can be ef- fective in distinguishing benign and malicious apps. SIG- PID then utilizes classification algorithms to classify differ- ent families of malware and benign apps. Our evaluation finds that only 22 out of 135 permissions are significant. We then compare the performance of our approach, using only

22 permissions, against a baseline approach that analyzes all permissions. The results indicate that when Support Vec- tor Machine (SVM) is used as the classifier, we can achieve over 90% of precision, recall, accuracy, and F-measure, which  are about the same as those produced by the base- line approach while incurring the analysis times that are 4 to 32 times smaller that those of using all 135 permissions. When we compare the detection effectiveness of SIGPID to those of other approaches, SIGPID can detect 93.62% of malware in the data set, and 91.4% unknown malware.

Yu, Tingting, Srisa-an, Witawas, Rothermel, Gregg.  2014.  SimRT: An Automated Framework to Support Regression Testing for Data Races. International Conference on Software Engineering (ICSE) 2014, .

Concurrent programs are prone to various classes of difficult-to- detect faults, of which data races are particularly prevalent. Prior work has attempted to increase the cost-effectiveness of approaches for testing for data races by employing race detection techniques, but to date, no work has considered cost-effective approaches for re-testing for races as programs evolve. In this paper we present SIMRT, an automated regression testing framework for use in de- tecting races introduced by code modifications. SIMRT employs a regression test selection technique, focused on sets of program ele- ments related to race detection, to reduce the number of test cases that must be run on a changed program to detect races that occur due to code modifications, and it employs a test case prioritiza- tion technique to improve the rate at which such races are detected. Our empirical study of SIMRT reveals that it is more efficient and effective for revealing races than other approaches, and that its con- stituent test selection and prioritization components each contribute to its performance.

Miscellaneous
Rogerio de Lemos, Holger Giese, Hausi Muller, Mary Shaw, Jesper Andersson, Marin Litoiu, Bradley Schmerl, Gabriel Tamura, Norha Villegas, Thomas Vogel et al..  2013.  Software engineering for self-adaptive systems: A second research roadmap.

The goal of this roadmap paper is to summarize the stateof-the-art and identify research challenges when developing, deploying and managing self-adaptive software systems. Instead of dealing with a wide range of topics associated with the field, we focus on four essential topics of self-adaptation: design space for self-adaptive solutions, software engineering processes for self-adaptive systems, from centralized to decentralized control, and practical run-time verification & validation for self-adaptive systems. For each topic, we present an overview, suggest future directions, and focus on selected challenges. This paper complements and extends a previous roadmap on software engineering for self-adaptive systems published in 2009 covering a different set of topics, and reflecting in part on the previous paper. This roadmap is one of the many results of the Dagstuhl Seminar 10431 on Software Engineering for Self-Adaptive Systems, which took place in October 2010.