Visible to the public Biblio

Filters: Author is Joshua Sunshine  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Z
Zack Coker, Michael Maass, Tianyuan Ding, Claire Le Goues, Joshua Sunshine.  2015.  Evaluating the Flexibility of the Java Sandbox. ACSAC Annual Computer Security Applications Conference.

The ubiquitously-installed Java Runtime Environment (JRE) provides a complex, flexible set of mechanisms that support the execution of untrusted code inside a secure sandbox. However, many recent exploits have successfully escaped the sandbox, allowing attackers to infect numerous Java hosts. We hypothesize that the Java security model affords developers more flexibility than they need or use in practice, and thus its complexity compromises security without improving practical functionality. We describe an empirical study of the ways benign open-source Java applications use and interact with the Java security manager. We found that developers regularly misunderstand or misuse Java security mechanisms, that benign programs do not use all of the vast flexibility afforded by the Java security model, and that there are clear differences between the ways benign and exploit programs interact with the security manager. We validate these results by deriving two restrictions on application behavior that restrict (1) security manager modifications and (2) privilege escalation. We demonstrate that enforcing these rules at runtime stop a representative proportion of modern Java 7 exploits without breaking backwards compatibility with benign applications. These practical rules should be enforced in the JRE to fortify the Java sandbox.

Zack Coker, Michael Maass, Tianyuan Ding, Claire Le Goues, Joshua Sunshine.  2015.  Evaluating the Flexibility of the Java Sandbox. ACSAC 2015 Proceedings of the 31st Annual Computer Security Applications Conference.

The ubiquitously-installed Java Runtime Environment (JRE) provides a complex, flexible set of mechanisms that support the execution of untrusted code inside a secure sandbox. However, many recent exploits have successfully escaped the sandbox, allowing attackers to infect numerous Java hosts. We hypothesize that the Java security model affords developers more flexibility than they need or use in practice, and thus its complexity compromises security without improving practical functionality. We describe an empirical study of the ways benign open-source Java applications use and interact with the Java security manager. We found that developers regularly misunderstand or misuse Java security mechanisms, that benign programs do not use all of the vast flexibility afforded by the Java security model, and that there are clear differences between the ways benign and exploit programs interact with the security manager. We validate these results by deriving two restrictions on application behavior that restrict (1) security manager modifications and (2) privilege escalation. We demonstrate that enforcing these rules at runtime stop a representative proportion of modern Java 7 exploits without breaking backwards compatibility with benign applications. These practical rules should be enforced in the JRE to fortify the Java sandbox.

W
Waqar Ahmad, Joshua Sunshine, Christian Kästner, Adam Wynne.  2015.  Enforcing Fine-Grained Security and Privacy Policies in an Ecosystem within an Ecosystem. Systems, Programming, Languages and Applications: Software for Humanity (SPLASH).

Smart home automation and IoT promise to bring many advantages but they also expose their users to certain security and privacy vulnerabilities. For example, leaking the information about the absence of a person from home or the medicine somebody is taking may have serious security and privacy consequences for home users and potential legal implications for providers of home automation and IoT platforms. We envision that a new ecosystem within an existing smartphone ecosystem will be a suitable platform for distribution of apps for smart home and IoT devices. Android is increasingly becoming a popular platform for smart home and IoT devices and applications. Built-in security mechanisms in ecosystems such as Android have limitations that can be exploited by malicious apps to leak users' sensitive data to unintended recipients. For instance, Android enforces that an app requires the Internet permission in order to access a web server but it does not control which servers the app talks to or what data it shares with other apps. Therefore, sub-ecosystems that enforce additional fine-grained custom policies on top of existing policies of the smartphone ecosystems are necessary for smart home or IoT platforms. To this end, we have built a tool that enforces additional policies on inter-app interactions and permissions of Android apps. We have done preliminary testing of our tool on three proprietary apps developed by a future provider of a home automation platform. Our initial evaluation demonstrates that it is possible to develop mechanisms that allow definition and enforcement of custom security policies appropriate for ecosystems of the like smart home automation and IoT.

Waqar Ahmad, Christian Kästner, Joshua Sunshine, Jonathan Aldrich.  2016.  Inter-app Communication in Android: Developer Challenges. 2016 IEEE/ACM 13th Working Conference on Mining Software Repositories. :177-188.

The Android platform is designed to support mutually untrusted third-party apps, which run as isolated processes but may interact via platform-controlled mechanisms, called Intents. Interactions among third-party apps are intended and can contribute to a rich user experience, for example, the ability to share pictures from one app with another. The Android platform presents an interesting point in a design space of module systems that is biased toward isolation, extensibility, and untrusted contributions. The Intent mechanism essentially provides message channels among modules, in which the set of message types is extensible. However, the module system has design limitations including the lack of consistent mechanisms to document message types, very limited checking that a message conforms to its specifications, the inability to explicitly declare dependencies on other modules, and the lack of checks for backward compatibility as message types evolve over time. In order to understand the degree to which these design limitations result in real issues, we studied a broad corpus of apps and cross-validated our results against app documentation and Android support forums. Our findings suggest that design limitations do indeed cause development problems. Based on our results, we outline further research questions and propose possible mitigation strategies.

M
Michael Maass, Adam Sales, Benjamin Chung, Joshua Sunshine.  2016.  A systematic analysis of the science of sandboxing. PeerJ Computer Science. 2

Sandboxes are increasingly important building materials for secure software systems. In recognition of their potential to improve the security posture of many systems at various points in the development lifecycle, researchers have spent the last several decades developing, improving, and evaluating sandboxing techniques. What has been done in this space? Where are the barriers to advancement? What are the gaps in these efforts? We systematically analyze a decade of sandbox research from five top-tier security and systems conferences using qualitative content analysis, statistical clustering, and graph-based metrics to answer these questions and more. We find that the term “sandbox” currently has no widely accepted or acceptable definition. We use our broad scope to propose the first concise and comprehensive definition for “sandbox” that consistently encompasses research sandboxes. We learn that the sandboxing landscape covers a range of deployment options and policy enforcement techniques collectively capable of defending diverse sets of components while mitigating a wide range of vulnerabilities. Researchers consistently make security, performance, and applicability claims about their sandboxes and tend to narrowly define the claims to ensure they can be evaluated. Those claims are validated using multi-faceted strategies spanning proof, analytical analysis, benchmark suites, case studies, and argumentation. However, we find two cases for improvement: (1) the arguments researchers present are often ad hoc and (2) sandbox usability is mostly uncharted territory. We propose ways to structure arguments to ensure they fully support their corresponding claims and suggest lightweight means of evaluating sandbox usability.

Michael Coblenz, Robert Seacord, Brad Myers, Joshua Sunshine, Jonathan Aldrich.  2015.  A Course-Based Usability Analysis of Cilk Plus and OpenMP. IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC) .

Cilk Plus and OpenMP are parallel language ex-tensions for the C and C++ programming languages. The CPLEX Study Group of the ISO/IEC C Standards Committee is developing a proposal for a parallel programming extension to C that combines ideas from Cilk Plus and OpenMP. We conducted a preliminary comparison of Cilk Plus and OpenMP in a master's level course on security to evaluate the design tradeoffs in the usability and security of these two approaches. The eventual goal is to inform decision making within the committee. We found several usability problems worthy of further investigation based on student performance, including declaring and using reductions, multi-line compiler directives, and the understandability of task assignment to threads.

Michael Coblenz, Joshua Sunshine, Jonathan Aldrich, Brad Myers, Sam Weber, Forrest Shull.  2016.  Exploring Language Support for Immutability. ICSE '16 Proceedings of the 38th International Conference on Software Engineering.

Programming languages can restrict state change by preventing it entirely (immutability) or by restricting which clients may modify state (read-only restrictions). The benefits of immutability and read-only restrictions in software structures have been long-argued by practicing software engineers, researchers, and programming language designers. However, there are many proposals for language mechanisms for restricting state change, with a remarkable diversity of techniques and goals, and there is little empirical data regarding what practicing software engineers want in their tools and what would benefit them. We systematized the large collection of techniques used by programming languages to help programmers prevent undesired changes in state. We interviewed expert software engineers to discover their expectations and requirements, and found that important requirements, such as expressing immutability constraints, were not reflected in features available in the languages participants used. The interview results informed our design of a new language extension for specifying immutability in Java. Through an iterative, participatory design process, we created a tool that reflects requirements from both our interviews and the research literature.

Michael Coblenz, Jonathan Aldrich, Brad Myers, Joshua Sunshine.  2014.  Considering Productivity Effects of Explicit Type Declarations. PLATEAU '14 Proceedings of the 5th Workshop on Evaluation and Usability of Programming Languages and Tools.

Static types may be used both by the language implementation and directly by the user as documentation. Though much existing work focuses primarily on the implications of static types on the semantics of programs, relatively little work considers the impact on usability that static types provide. Though the omission of static type information may decrease program length and thereby improve readability, it may also decrease readability because users must then frequently derive type information manually while reading programs. As type inference becomes more popular in languages that are in widespread use, it is important to consider whether the adoption of type inference may impact productivity of developers.

Michael Coblenz, Whitney Nelson, Jonathan Aldrich, Brad Myers, Joshua Sunshine.  2017.  Glacier: Transitive Class Immutability for Java. 39th International Conference on Software Engineering.

Though immutability has been long-proposed as a way to prevent bugs in software, little is known about how to make immutability support in programming languages effective for software engineers. We designed a new formalism that extends Java to support transitive class immutability, the form of immutability for which there is the strongest empirical support, and implemented that formalism in a tool called Glacier. We applied Glacier successfully to two real-world systems. We also compared Glacier to Java’s final in a user study of twenty participants. We found that even after being given instructions on how to express immutability with final, participants who used final were unable to express immutability correctly, whereas almost all participants who used Glacier succeeded. We also asked participants to make specific changes to immutable classes and found that participants who used final all incorrectly mutated immutable state, whereas almost all of the participants who used Glacier succeeded. Glacier represents a promising approach to enforcing immutability in Java and provides a model for enforcement in other languages.

J
Joshua Sunshine, James Herbsleb, Jonathan Aldrich.  2015.  Searching the State Space: A Qualitative Study of API Protocol Usability. International Conference on Software Engineering (ICSE).

Application Programming Interfaces (APIs) often define protocols --- restrictions on the order of client calls to API methods. API protocols are common and difficult to use, which has generated tremendous research effort in alternative specification, implementation, and verification techniques. However, little is understood about the barriers programmers face when using these APIs, and therefore the research effort may be misdirected.

To understand these barriers better, we perform a two-part qualitative study. First, we study developer forums to identify problems that developers have with protocols. Second, we perform a think-aloud observational study, in which we systematically observe professional programmers struggle with these same problems to get more detail on the nature of their struggles and how they use available resources. In our observations, programmer time was spent primarily on four types of searches of the protocol state space. These observations suggest protocol-targeted tools, languages, and verification techniques will be most effective if they enable programmers to efficiently perform state search.

Joshua Sunshine, James Herbsleb, Jonathan Aldrich.  2014.   Structuring Documentation to Support State Search: A Laboratory Experiment about Protocol Programming. Proceedings of the 28th European Conference on ECOOP 2014 --- Object-Oriented Programming. 8586

Application Programming Interfaces APIs often define object protocols. Objects with protocols have a finite number of states and in each state a different set of method calls is valid. Many researchers have developed protocol verification tools because protocols are notoriously difficult to follow correctly. However, recent research suggests that a major challenge for API protocol programmers is effectively searching the state space. Verification is an ineffective guide for this kind of search. In this paper we instead propose Plaiddoc, which is like Javadoc except it organizes methods by state instead of by class and it includes explicit state transitions, state-based type specifications, and rich state relationships. We compare Plaiddoc to a Javadoc control in a between-subjects laboratory experiment. We find that Plaiddoc participants complete state search tasks in significantly less time and with significantly fewer errors than Javadoc participants.

C
Cyrus Omar, Ian Voysey, Michael Hilton, Joshua Sunshine, Claire Le Goues, Jonathan Aldrich, Matthew Hammer.  2017.  Toward Semantic Foundations for Program Editors. 2nd Summit on Advances in Programming Languages (SNAPL 2017).

Programming language definitions assign formal meaning to complete programs. Programmers, however, spend a substantial amount of time interacting with incomplete programs -- programs with holes, type inconsistencies and binding inconsistencies -- using tools like program editors and live programming environments (which interleave editing and evaluation). Semanticists have done comparatively little to formally characterize (1) the static and dynamic semantics of incomplete programs; (2) the actions available to programmers as they edit and inspect incomplete programs; and (3) the behavior of editor services that suggest likely edit actions to the programmer based on semantic information extracted from the incomplete program being edited, and from programs that the system has encountered in the past. As such, each tool designer has largely been left to develop their own ad hoc heuristics. 
This paper serves as a vision statement for a research program that seeks to develop these "missing" semantic foundations. Our hope is that these contributions, which will take the form of a series of simple formal calculi equipped with a tractable metatheory, will guide the design of a variety of current and future interactive programming tools, much as various lambda calculi have guided modern language designs. Our own research will apply these principles in the design of Hazel, an experimental live lab notebook programming environment designed for data science tasks. We plan to co-design the Hazel language with the editor so that we can explore concepts such as edit-time semantic conflict resolution mechanisms and mechanisms that allow library providers to install library-specific editor services.