Visible to the public Biblio

Filters: Author is Gabriel Moreno  [Clear All Filters]
Javier Camara, David Garlan, Gabriel Moreno, Bradley Schmerl.  2016.  Evaluating Trade-offs of Human Involvement in Self-adaptive Systems. Managing Trade-offs in Adaptable Software Architectures.

Software systems are increasingly called upon to autonomously manage their goals in changing contexts and environments, and under evolving requirements. In some circumstances, autonomous systems cannot be fully-automated but instead cooperate with human operators to maintain and adapt themselves. Furthermore, there are times when a choice should be made between doing a manual or automated repair. Involving operators in self-adaptation should itself be adaptive, and consider aspects such as the training, attention, and ability of operators. Not only do these aspects change from person to person, but they may change with the same person. These aspects make the choice of whether to involve humans non-obvious. Self-adaptive systems should trade-off whether to involve operators, taking these aspects into consideration along with other business qualities it is attempting to achieve. In this chapter, we identify the various roles that operators can perform in cooperating with self-adapting systems. We focus on humans as effectors-doing tasks which are difficult or infeasible to automate. We describe how we modified our self-adaptive framework, Rainbow, to involve operators in this way, which involved choosing suitable human models and integrating them into the existing utility trade-off decision models of Rainbow. We use probabilistic modeling and quantitative verification to analyze the trade-offs of involving humans in adaptation, and complement our study with experiments to show how different business preferences and modalities of human involvement may result in different outcomes.

Bradley Schmerl, Javier Camara, Jeffrey Gennari, David Garlan, Paulo Casanova, Gabriel Moreno, Thomas Glazier, Jeffrey Barnes.  2014.  Architecture-Based Self-Protection: Composing and Reasoning about Denial-of-Service Mitigations. HotSoS '14 Proceedings of the 2014 Symposium and Bootcamp on the Science of Security.

Security features are often hardwired into software applications, making it difficult to adapt security responses to reflect changes in runtime context and new attacks. In prior work, we proposed the idea of architecture-based self-protection as a way of separating adaptation logic from application logic and providing a global perspective for reasoning about security adaptations in the context of other business goals. In this paper, we present an approach, based on this idea, for combating denial-of-service (DoS) attacks. Our approach allows DoS-related tactics to be composed into more sophisticated mitigation strategies that encapsulate possible responses to a security problem. Then, utility-based reasoning can be used to consider different business contexts and qualities. We describe how this approach forms the underpinnings of a scientific approach to self-protection, allowing us to reason about how to make the best choice of mitigation at runtime. Moreover, we also show how formal analysis can be used to determine whether the mitigations cover the range of conditions the system is likely to encounter, and the effect of mitigations on other quality attributes of the system. We evaluate the approach using the Rainbow self-adaptive framework and show how Rainbow chooses DoS mitigation tactics that are sensitive to different business contexts.

Gabriel Moreno, Javier Camara, David Garlan, Bradley Schmerl.  2015.  Proactive Self-Adaptation under Uncertainty: a Probabilistic Model Checking Approach. ESEC/FSE 2015 Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.

Self-adaptive systems tend to be reactive and myopic, adapting in response to changes without anticipating what the subsequent adaptation needs will be. Adapting reactively can result in inefficiencies due to the system performing a suboptimal sequence of adaptations. Furthermore, when adaptations have latency, and take some time to produce their effect, they have to be started with sufficient lead time so that they complete by the time their effect is needed. Proactive latency-aware adaptation addresses these issues by making adaptation decisions with a look-ahead horizon and taking adaptation latency into account. In this paper we present an approach for proactive latency-aware adaptation under uncertainty that uses probabilistic model checking for adaptation decisions. The key idea is to use a formal model of the adaptive system in which the adaptation decision is left underspecified through nondeterminism, and have the model checker resolve the nondeterministic choices so that the accumulated utility over the horizon is maximized. The adaptation decision is optimal over the horizon, and takes into account the inherent uncertainty of the environment predictions needed for looking ahead. Our results show that the decision based on a look-ahead horizon, and the factoring of both tactic latency and environment uncertainty, considerably improve the effectiveness of adaptation decisions.

Javier Camara, Gabriel Moreno, David Garlan.  2015.  Reasoning about Human Participation in Self-Adaptive Systems. SEAMS '15 Proceedings of the 10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems.

Self-adaptive systems overcome many of the limitations of human supervision in complex software-intensive systems by endowing them with the ability to automatically adapt their structure and behavior in the presence of runtime changes. However, adaptation in some classes of systems (e.g., safety-critical) can benefit by receiving information from humans (e.g., acting as sophisticated sensors, decision-makers), or by involving them as system-level effectors to execute adaptations (e.g., when automation is not possible, or as a fallback mechanism). However, human participants are influenced by factors external to the system (e.g., training level, fatigue) that affect the likelihood of success when they perform a task, its duration, or even if they are willing to perform it in the first place. Without careful consideration of these factors, it is unclear how to decide when to involve humans in adaptation, and in which way. In this paper, we investigate how the explicit modeling of human participants can provide a better insight into the trade-offs of involving humans in adaptation. We contribute a formal framework to reason about human involvement in self-adaptation, focusing on the role of human participants as actors (i.e., effectors) during the execution stage of adaptation. The approach consists of: (i) a language to express adaptation models that capture factors affecting human behavior and its interactions with the system, and (ii) a formalization of these adaptation models as stochastic multiplayer games (SMGs) that can be used to analyze human-system-environment interactions. We illustrate our approach in an adaptive industrial middleware used to monitor and manage sensor networks in renewable energy production plants.