Visible to the public Biblio

Filters: First Letter Of Title is I  [Clear All Filters]
A B C D E F G H [I] J K L M N O P Q R S T U V W X Y Z   [Show ALL]
I
Munindar P. Singh, Amit K. Chopra.  2017.  The Internet of Things and Multiagent Systems: Decentralized Intelligence in Distributed Computing. Proceedings of the 37th IEEE International Conference on Distributed Computing Systems (ICDCS). :1738–1747.

Traditionally, distributed computing concentrates on computation understood at the level of information exchange and sets aside human and organizational concerns as largely to be handled in an ad hoc manner.  Increasingly, however, distributed applications involve multiple loci of autonomy.  Research in multiagent systems (MAS) addresses autonomy by drawing on concepts and techniques from artificial intelligence.  However, MAS research generally lacks an adequate understanding of modern distributed computing.

In this Blue Sky paper, we envision decentralized multiagent systems as a way to place decentralized intelligence in distributed computing, specifically, by supporting computation at the level of social meanings.  We motivate our proposals for research in the context of the Internet of Things (IoT), which has become a major thrust in distributed computing.  From the IoT's representative applications, we abstract out the major challenges of relevance to decentralized intelligence.  These include the heterogeneity of IoT components; asynchronous and delay-tolerant communication and decoupled enactment; and multiple stakeholders with subtle requirements for governance, incorporating resource usage, cooperation, and privacy.  The IoT yields high-impact problems that require solutions that go beyond traditional ways of thinking.

We conclude with highlights of some possible research directions in decentralized MAS, including programming models; interaction-oriented software engineering; and what we term enlightened governance.

Blue Sky Thinking Track

Waqar Ahmad, Christian Kästner, Joshua Sunshine, Jonathan Aldrich.  2016.  Inter-app Communication in Android: Developer Challenges. 2016 IEEE/ACM 13th Working Conference on Mining Software Repositories. :177-188.

The Android platform is designed to support mutually untrusted third-party apps, which run as isolated processes but may interact via platform-controlled mechanisms, called Intents. Interactions among third-party apps are intended and can contribute to a rich user experience, for example, the ability to share pictures from one app with another. The Android platform presents an interesting point in a design space of module systems that is biased toward isolation, extensibility, and untrusted contributions. The Intent mechanism essentially provides message channels among modules, in which the set of message types is extensible. However, the module system has design limitations including the lack of consistent mechanisms to document message types, very limited checking that a message conforms to its specifications, the inability to explicitly declare dependencies on other modules, and the lack of checks for backward compatibility as message types evolve over time. In order to understand the degree to which these design limitations result in real issues, we studied a broad corpus of apps and cross-validated our results against app documentation and Android support forums. Our findings suggest that design limitations do indeed cause development problems. Based on our results, we outline further research questions and propose possible mitigation strategies.

James Herbsleb, Christian Kästner, Christopher Bogart.  2015.  Intelligently Transparent Software Ecosystems. IEEE Software. 33(1)

Today's social-coding tools foreshadow a transformation of the software industry, as it relies increasingly on open libraries, frameworks, and code fragments. Our vision calls for new intelligently transparent services that support rapid development of innovative products while helping developers manage risk and issuing them early warnings of looming failures. Intelligent transparency is enabled by an infrastructure that applies analytics to data from all phases of the life cycle of open source projects, from development to deployment. Such an infrastructure brings stakeholders the information they need when they need it.

Maass, Michael, Scherlis, Bill, Aldrich, Jonathan.  2014.  In-Nimbo Sandboxing. Symposium and Bootcamp on the Science of Security (HotSOS), 2014.

Sandboxes impose a security policy, isolating applications
and their components from the rest of a system. While
many sandboxing techniques exist, state of the art sandboxes
generally perform their functions within the system
that is being defended. As a result, when the sandbox fails
or is bypassed, the security of the surrounding system can
no longer be assured. We experiment with the idea of innimbo
sandboxing, encapsulating untrusted computations
away from the system we are trying to protect. The idea
is to delegate computations that may be vulnerable or malicious
to virtual machine instances in a cloud computing
environment.
This may not reduce the possibility of an in-situ sandbox
compromise, but it could significantly reduce the consequences
should that possibility be realized. To achieve this
advantage, there are additional requirements, including: (1)
A regulated channel between the local and cloud environments
that supports interaction with the encapsulated application,
(2) Performance design that acceptably minimizes
latencies in excess of the in-situ baseline.
To test the feasibility of the idea, we built an in-nimbo
sandbox for Adobe Reader, an application that historically
has been subject to significant attacks. We undertook a
prototype deployment with PDF users in a large aerospace
firm. In addition to thwarting several examples of existing
PDF-based malware, we found that the added increment of
latency, perhaps surprisingly, does not overly impair the

Michael Maass, William Scherlis, Jonathan Aldrich.  2014.  In-Nimbo Sandboxing. HotSoS '14 Proceedings of the 2014 Symposium and Bootcamp on the Science of Security.

Sandboxes impose a security policy, isolating applications and their components from the rest of a system. While many sandboxing techniques exist, state of the art sandboxes generally perform their functions within the system that is being defended. As a result, when the sandbox fails or is bypassed, the security of the surrounding system can no longer be assured. We experiment with the idea of in-nimbo sandboxing, encapsulating untrusted computations away from the system we are trying to protect. The idea is to delegate computations that may be vulnerable or malicious to virtual machine instances in a cloud computing environment.

This may not reduce the possibility of an in-situ sandbox compromise, but it could significantly reduce the consequences should that possibility be realized. To achieve this advantage, there are additional requirements, including: (1) A regulated channel between the local and cloud environments that supports interaction with the encapsulated application, (2) Performance design that acceptably minimizes latencies in excess of the in-situ baseline.

To test the feasibility of the idea, we built an in-nimbo sandbox for Adobe Reader, an application that historically has been subject to significant attacks. We undertook a prototype deployment with PDF users in a large aerospace firm. In addition to thwarting several examples of existing PDF-based malware, we found that the added increment of latency, perhaps surprisingly, does not overly impair the user experience with respect to performance or usability.

Naeem Esfahani, Eric Yuan, Kyle Canavera, Sam Malek.  2016.  Inferring Software Component Interaction Dependencies for Adaptation Support. ACM Transactions on Autonomous and Adaptive Systems (TAAS). 10(4)

A self-managing software system should be able to monitor and analyze its runtime behavior and make adaptation decisions accordingly to meet certain desirable objectives. Traditional software adaptation techniques and recent “models@runtime” approaches usually require an a priori model for a system’s dynamic behavior. Oftentimes the model is difficult to define and labor-intensive to maintain, and tends to get out of date due to adaptation and architecture decay. We propose an alternative approach that does not require defining the system’s behavior model beforehand, but instead involves mining software component interactions from system execution traces to build a probabilistic usage model, which is in turn used to analyze, plan, and execute adaptations. In this article, we demonstrate how such an approach can be realized and effectively used to address a variety of adaptation concerns. In particular, we describe the details of one application of this approach for safely applying dynamic changes to a running software system without creating inconsistencies. We also provide an overview of two other applications of the approach, identifying potentially malicious (abnormal) behavior for self-protection, and improving deployment of software components in a distributed setting for performance self-optimization. Finally, we report on our experiments with engineering self-management features in an emergency deployment system using the proposed mining approach.

Steve Awodey, Nicola Gambino, Kristina Sojakova.  2012.  Inductive types in homotopy type theory. LICS '12 Proceedings of the 2012 27th Annual IEEE/ACM Symposium on Logic in Computer Science.

Homotopy type theory is an interpretation of Martin-L¨of’s constructive type theory into abstract homotopy theory. There results a link between constructive mathematics and algebraic topology, providing topological semantics for intensional systems of type theory as well as a computational approach to algebraic topology via type theory-based proof assistants such as Coq. The present work investigates inductive types in this setting. Modified rules for inductive types, including types of well-founded trees, or W-types, are presented, and the basic homotopical semantics of such types are determined. Proofs of all results have been formally verified by the Coq proof assistant, and the proof scripts for this verification form an essential component of this research.

Bernardo Toninho, Luis Caires, Frank Pfenning.  2013.  Inductive and Coinductive Session Types in Higher-Order Concurrent Programs.

We develop a theory of inductive and coinductive session types in a computational interpretation of linear logic, enabling the representation of potentially infinite interactions in a compositionally sound way that preserves logical soundness, a major stepping stone towards a full dependent type theory for expressing and reasoning about session-based concurrent higher order distributed programs. The language consists of a λ-calculus with inductive types and a contextual monadic type encapsulating session-based concurrency, treating monadic values as first-class objects. We consider general fixpoint and cofixpoint constructs, subject to natural syntactic constraints, as a means of producing inductive and coinductive definitions of session-typed processes, that until now have only been considered using general recursion, which is incompatible with logical consistency and introduces compositional divergence. We establish a type safety result for our language, including protocol compliance and progress of concurrent computation, and also show, through a logical relations argument, that all well-typed programs are compositionally non-divergent. Our results entail the logical soundness of the framework, and enable compositional reasoning about useful infinite interactive behaviors, while ruling out unproductive infinite behavior.

Hanan Hibshi, Travis Breaux, Christian Wagner.  2016.  Improving Security Requirements Adequacy An Interval Type 2 Fuzzy Logic Security Assessment System. 2016 IEEE Symposium Series on Computational Intelligence .

Organizations rely on security experts to improve the security of their systems. These professionals use background knowledge and experience to align known threats and vulnerabilities before selecting mitigation options. The substantial depth of expertise in any one area (e.g., databases, networks, operating systems) precludes the possibility that an expert would have complete knowledge about all threats and vulnerabilities. To begin addressing this problem of distributed knowledge, we investigate the challenge of developing a security requirements rule base that mimics human expert reasoning to enable new decision-support systems. In this paper, we show how to collect relevant information from cyber security experts to enable the generation of: (1) interval type-2 fuzzy sets that capture intra- and inter-expert uncertainty around vulnerability levels; and (2) fuzzy logic rules underpinning the decision-making process within the requirements analysis. The proposed method relies on comparative ratings of security requirements in the context of concrete vignettes, providing a novel, interdisciplinary approach to knowledge generation for fuzzy logic systems. The proposed approach is tested by evaluating 52 scenarios with 13 experts to compare their assessments to those of the fuzzy logic decision support system. The initial results show that the system provides reliable assessments to the security analysts, in particular, generating more conservative assessments in 19% of the test scenarios compared to the experts’ ratings. 

Daniel M. Best, Jaspreet Bhatia, Elena Peterson, Travis Breaux.  2017.  Improved cyber threat indicator sharing by scoring privacy risk. 2017 IEEE International Symposium on Technologies for Homeland Security (HST).

Information security can benefit from real-time cyber threat indicator sharing, in which companies and government agencies share their knowledge of emerging cyberattacks to benefit their sector and society at large. As attacks become increasingly sophisticated by exploiting behavioral dimensions of human computer operators, there is an increased risk to systems that store personal information. In addition, risk increases as individuals blur the boundaries between workplace and home computing (e.g., using workplace computers for personal reasons). This paper describes an architecture to leverage individual perceptions of privacy risk to compute privacy risk scores over cyber threat indicator data. Unlike security risk, which is a risk to a particular system, privacy risk concerns an individual's personal information being accessed and exploited. The architecture integrates tools to extract information entities from textual threat reports expressed in the STIX format and privacy risk estimates computed using factorial vignettes to survey individual risk perceptions. The architecture aims to optimize for scalability and adaptability to achieve real-time risk scoring.

Javier Camara, Antonia Lopes, David Garlan, Bradley Schmerl.  2014.  Impact Models for Architecture-Based Self-Adaptive Systems.

Self-adaptive systems have the ability to adapt their behavior to dynamic operation conditions. In reaction to changes in the environment, these systems determine the appropriate corrective actions based in part on information about which action will have the best impact on the system. Existing models used to describe the impact of adaptations are either unable to capture the underlying uncertainty and variability of such dynamic environments, or are not compositional and described at a level of abstraction too low to scale in terms of specification effort required for non-trivial systems. In this paper, we address these shortcomings by describing an approach to the specification of impact models based on architectural system descriptions, which at the same time allows us to represent both variability and uncertainty in the outcome of adaptations, hence improving the selection of the best corrective action. The core of our approach is an impact model language equipped with a formal semantics defined in terms of Discrete Time Markov Chains. To validate our approach, we show how employing our language can improve the accuracy of predictions used for decisionmaking in the Rainbow framework for architecture-based self-adaptation. 

Marwan Abi-Antoun, Yibin Wang, Ebrahim Khalaj, Andrew Giang, Vaclav Rajlich.  2015.  Impact Analysis based on a Global Hierarchical Object Graph. 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER).

During impact analysis on object-oriented code, statically extracting dependencies is often complicated by subclassing, programming to interfaces, aliasing, and collections, among others. When a tool recommends a large number of types or does not rank its recommendations, it may lead developers to explore more irrelevant code. We propose to mine and rank dependencies based on a global, hierarchical points-to graph that is extracted using abstract interpretation. A previous whole-program static analysis interprets a program enriched with annotations that express hierarchy, and over-approximates all the objects that may be created at runtime and how they may communicate. In this paper, an analysis mines the hierarchy and the edges in the graph to extract and rank dependencies such as the most important classes related to a class, or the most important classes behind an interface. An evaluation using two case studies on two systems totaling 10,000 lines of code and five completed code modification tasks shows that following dependencies based on abstract interpretation achieves higher effectiveness compared to following dependencies extracted from the abstract syntax tree. As a result, developers explore less irrelevant code.

Raman Goyal, Gabriel Ferreira, Christian Kästner, James Herbsleb.  2017.  Identifying Unusual Commits on GitHub. JOURNAL OF SOFTWARE: EVOLUTION AND PROCESS.

Transparent environments and social-coding platforms as GitHub help developers to stay abreast of changes during the development and maintenance phase of a project. Especially, notification feeds can help developers to learn about relevant changes in other projects. Unfortunately, transparent environments can quickly overwhelm developers with too many notifications, such that they loose the important ones in a sea of noise. Complementing existing prioritization and filtering strategies based on binary compatibility and code ownership, we develop an anomaly-detection mechanism to identify unusual commits in a repository, that stand out with respect to other changes in the same repository or by the same developer. Among others, we detect exceptionally large commits, commits at unusual times, and commits touching rarely changed file types given the characteristics of a particular repository or developer. We automatically flag unusual commits on GitHub through a browser plugin. In an interactive survey with 173 active GitHub users, rating commits in a project of their interest, we found that, though our unusual score is only a weak predictor of whether developers want to be notified about a commit, information about unusual characteristics of a commit change how developers regard commits. Our anomaly-detection mechanism is a building block for scaling transparent environments.