Visible to the public Biblio

Filters: First Letter Of Title is L  [Clear All Filters]
A B C D E F G H I J K [L] M N O P Q R S T U V W X Y Z   [Show ALL]
L
Ben Blum.  2012.  Landslide: Systematic Exploration for Kernel-Space Race Detection. School of Computer Science. MS:88.

Systematic exploration is an approach to finding race conditions by deterministically executing every possible interleaving of thread transitions and identifying which ones expose bugs. Current systematic exploration techniques are suitable for testing user-space programs, but are inadequate for testing kernels, where the testing framework’s control over concurrency is more complicated. We present Landslide, a systematic exploration tool for finding races in kernels. Landslide targets Pebbles, the kernel specification that students implement in the undergraduate Operating Systems course at Carnegie Mellon University (15- 410). We discuss the techniques Landslide uses to address the general challenges of kernel-level concurrency, and we evaluate its effectiveness and usability as a debugging aid. We show that our techniques make systematic testing in kernel-space feasible and that Landslide is a useful tool for doing so in the context of 15-410.

Jonathan Aldrich, Cyrus Omar, Alex Potanin, Du Li.  2014.  Language-Based Architectural Control. Proceedings of the International Workshop on Aliasing, Capabilities and Ownership (IWACO), 2014.

Software architects design systems to achieve quality attributes like security, reliability, and performance. Key to achieving these quality attributes are design constraints governing how components of the system are configured, communicate and access resources. Unfortunately, identifying, specifying, communicating and enforcing important design constraints – achieving architectural control – can be difficult, particularly in large software systems. We argue for the development of architectural frameworks, built to leverage language mechanisms that provide for domain-specific syntax, editor services and explicit control over capabilities, that help increase architectural control. In particular, we argue for concise, centralized architectural descriptions which are responsible for specifying constraints and passing a minimal set of capabilities to downstream system components, or explicitly entrusting them to individuals playing defined roles within a team. By integrating these architectural descriptions directly into the language, the type system can help enforce technical constraints and editor services can help enforce social constraints. We sketch our approach in the context of distributed systems. 

Rao, Ashwini, Hibshi, Hanan, Breaux, Travis, Lehker, Jean-Michel, Niu, Jianwei.  2014.  Less is More? Investigating the Role of Examples in Security Studies using Analogical Transfer 2014 Symposium and Bootcamp on the Science of Security (HotSoS).

Information system developers and administrators often overlook critical security requirements and best practices. This may be due to lack of tools and techniques that allow practitioners to tailor security knowledge to their particular context. In order to explore the impact of new security methods, we must improve our ability to study the impact of security tools and methods on software and system development. In this paper, we present early findings of an experiment to assess the extent to which the number and type of examples used in security training stimuli can impact security problem solving. To motivate this research, we formulate hypotheses from analogical transfer theory in psychology. The independent variables include number of problem surfaces and schemas, and the dependent variable is the answer accuracy. Our study results do not show a statistically significant difference in performance when the number and types of examples are varied. We discuss the limitations, threats to validity and opportunities for future studies in this area.

Ashwini Rao, Hanan Hibshi, Travis Breaux, Jean-Michel Lehker, Jianwei Niu.  2014.  Less is More? Investigating the Role of Examples in Security Studies using Analogical Transfer HotSoS '14 Proceedings of the 2014 Symposium and Bootcamp on the Science of Security.

Information system developers and administrators often overlook critical security requirements and best practices. This may be due to lack of tools and techniques that allow practitioners to tailor security knowledge to their particular context. In order to explore the impact of new security methods, we must improve our ability to study the impact of security tools and methods on software and system development. In this paper, we present early findings of an experiment to assess the extent to which the number and type of examples used in security training stimuli can impact security problem solving. To motivate this research, we formulate hypotheses from analogical transfer theory in psychology. The independent variables include number of problem surfaces and schemas, and the dependent variable is the answer accuracy. Our study results do not show a statistically significant difference in performance when the number and types of examples are varied. We discuss the limitations, threats to validity and opportunities for future studies in this area.

[Anonymous].  2017.  Let me rephrase that: Transparent optimization in SDNs . ACM SIGCOMM Symposium on SDN Research (SOSR).

Enterprise networks today have highly diverse correctness requirements and relatively common performance objectives. As a result, preferred abstractions for enterprise networks are those which allow matching security and correctness specifications, while transparently managing performance. Existing SDN network management architectures, however, bundle correctness and performance as a single abstraction. We argue that this creates an SDN ecosystem that is unnecessarily hard to build, maintain and evolve. We advocate a separation of the diverse correctness abstractions from generic performance optimization, to enable easier evolution of SDN controllers and platforms. We propose Oreo, a first step towards a common and relatively transparent performance optimization layer for SDN. Oreo performs the optimization by first building a model that describes every flow in the network, and then performing network-wide, multi-objective optimization based on this model without disrupting higher level security and correctness. 

Authors: Santhosh Prabhu, Mo Dong, Tong Meng, P. Brighten Godfrey, and Matthew Caesar

Mitra Bokaei Hosseini, Sudarshan Wadkar, Travis Breaux, Jianwei Niu.  2016.  Lexical Similarity of Information Type Hypernyms, Meronyms and Synonyms in Privacy Policies. Association for the Advancement of Artificial Intelligence.

Privacy policies are used to communicate company data practices to consumers and must be accurate and comprehensive. Each policy author is free to use their own nomenclature when describing data practices, which leads to different ways in which similar information types are described across policies. A formal ontology can help policy authors, users and regulators consistently check how data practice descriptions relate to other interpretations of information types. In this paper, we describe an empirical method for manually constructing an information type ontology from privacy policies. The method consists of seven heuristics that explain how to infer hypernym, meronym and synonym relationships from information type phrases, which we discovered using grounded analysis of five privacy policies. The method was evaluated on 50 mobile privacy policies which produced an ontology consisting of 355 unique information type names. Based on the manual results, we describe an automated technique consisting of 14 reusable semantic rules to extract hypernymy, meronymy, and synonymy relations from information type phrases. The technique was evaluated on the manually constructed ontology to yield .95 precision and .51 recall.

Kaestner, Christian, Pfeffer, Juergen.  2014.  Limiting Recertification in Highly Configurable Systems: Analyzing Interactions and Isolation among Configuration Options. HotSoS '14 Proceedings of the 2014 Symposium and Bootcamp on the Science of Security.

In highly configurable systems the configuration space is too big for (re-)certifying every configuration in isolation. In this project, we combine software analysis with network analysis to detect which configuration options interact and which have local effects. Instead of analyzing a system as Linux and SELinux for every combination of configuration settings one by one (>102000 even considering compile-time configurations only), we analyze the effect of each configuration option once for the entire configuration space. The analysis will guide us to designs separating interacting configuration options in a core system and isolating orthogonal and less trusted configuration options from this core.

Christian Kästner, Jurgen Pfeffer.  2014.  Limiting Recertification in Highly Configurable Systems Analyzing Interactions and Isolation among Configuration Options. HotSoS '14 Proceedings of the 2014 Symposium and Bootcamp on the Science of Security.

In highly configurable systems the configuration space is too big for (re-)certifying every configuration in isolation. In this project, we combine software analysis with network analysis to detect which configuration options interact and which have local effects. Instead of analyzing a system as Linux and SELinux for every combination of configuration settings one by one (>102000 even considering compile-time configurations only), we analyze the effect of each configuration option once for the entire configuration space. The analysis will guide us to designs separating interacting configuration options in a core system and isolating orthogonal and less trusted configuration options from this core. 

Luis Caires, Frank Pfenning, Bernardo Toninho.  2014.  Linear Logic Propositions as Session Types.

Throughout the years, several typing disciplines for the π-calculus have been proposed. Arguably, the most widespread of these typing disciplines consists of session types. Session types describe the input/output behavior of processes and traditionally provide strong guarantees about this behavior (i.e., deadlock freedom and fidelity). While these systems exploit a fundamental notion of linearity, the precise connection between linear logic and session types has not been well understood. This paper proposes a type system for the π-calculus that corresponds to a standard sequent calculus presentation of intuitionistic linear logic, interpreting linear propositions as session types and thus providing a purely logical account of all key features and properties of session types. We show the deep correspondence between linear logic and session types by exhibiting a tight operational correspondence between cut elimination steps and process reductions. We also discuss an alternative presentation of linear session types based on classical linear logic, and compare our development with other more traditional session type systems. 

Jorge Perez, Luis Caires, Frank Pfenning, Bernardo Toninho.  2014.  Linear Logical Relations and Observational Equivalences for Session-Based Concurrency. Elsevier. 239

We investigate strong normalization, confluence, and behavioral equality in the realm of session-based concurrency. These interrelated issues underpin advanced correctness analysis in models of structured communications. The starting point for our study is an interpretation of linear logic propositions as session types for communicating processes, proposed in prior work. Strong normalization and confluence are established by developing a theory of logical relations. Defined upon a linear type structure, our logical relations remain remarkably similar to those for functional languages. We also introduce a natural notion of observational equivalence for session-typed processes. Strong normalization and confluence come in handy in the associated coinductive reasoning: as applications, we prove that all proof conversions induced by the logic interpretation actually express observational equivalences, and explain how type isomorphismsresulting from linear logic equivalences are realized by coercions between interface types of session-based concurrent systems.

Dennis Griffith, University of Illinois at Urbana-Champaign, Elsa Gunter, University of Illinois at Urbana-Champaign.  2013.  LiquidPi: Inferrable Dependent Session Types. 5th NASA Formal Methods Symposium NFM 2013 .

The Pi Calculus is a popular formalism for modeling distributed computation. Session Types extend the Pi Calculus with a static, inferable type system. Dependent Types allow for a more precise characterization of the behavior of programs, but in their full generality are not inferable. In this paper, we present LiquidPi an approach that combines the dependent type inferencing of Liquid Types with Honda’s Session Types to give a more precise automatically derived description of the behavior of distributed programs. These types can be used to describe/enforce safety properties of distributed systems. We present a type system parametric over an underlying functional language with Pi Calculus connectives and give an inference algorithm for it by means of efficient external solvers and a set of dependent qualifier templates.

Limin Jia, Shayak Sen, Deepak Garg, Anupam Datta.  2015.  A Logic of Programs with Interface-Confined Code. 2015 IEEE 28th Computer Security Foundations Symposium (CSF).

Interface-confinement is a common mechanism that secures untrusted code by executing it inside a sandbox. The sandbox limits (confines) the code's interaction with key system resources to a restricted set of interfaces. This practice is seen in web browsers, hypervisors, and other security-critical systems. Motivated by these systems, we present a program logic, called System M, for modeling and proving safety properties of systems that execute adversary-supplied code via interface-confinement. In addition to using computation types to specify effects of computations, System M includes a novel invariant type to specify the properties of interface-confined code. The interpretation of invariant type includes terms whose effects satisfy an invariant. We construct a step-indexed model built over traces and prove the soundness of System M relative to the model. System M is the first program logic that allows proofs of safety for programs that execute adversary-supplied code without forcing the adversarial code to be available for deep static analysis. System M can be used to model and verify protocols as well as system designs. We demonstrate the reasoning principles of System M by verifying the state integrity property of the design of Memoir, a previously proposed trusted computing system.

Luis Caires, Jorge Perez, Frank Pfenning, Bernardo Toninho.  2013.  Logic-Based Domain-Aware Session Types.

Software services and governing communication protocols are increasingly domain-aware. Domains can have multiple interpretations, such as the principals on whose behalf processes act or the location at which parties reside. Domains impact protocol compliance and access control, two central issues to overall functionality and correctness in distributed systems. This paper proposes a session-typed process framework for domain-aware communication-centric systems based on a CurryHoward interpretation of linear logic, here augmented with nominals from hybrid logic indicating domains. These nominals are explicit in the process expressions and govern domain migration, subject to a parametric accessibility relation familiar from the Kripke semantics for modal logic. Flexible access relationships among domains can be elegantly defined and statically enforced. The framework can also account for scenarios in which domain information is discovered only at runtime. Due to the logical origins of our systems, well-typed processes enjoy session fidelity, global progress, and termination. Moreover, well-typed processes always respect the accessibility relation and satisfy a form of domain parametricity, two properties crucial to show that domain-related properties of concrete programs are satisfied. 

Mezzour, Ghita, Carley, L. Richard, Carley, Kathleen.  2014.  Longitudinal Analysis of a Large Corpus of Cyber Threat Descriptions. Journal of Computer Virology and Hacking Techniques.

Online cyber threat descriptions are rich, but little research has attempted to systematically analyze these descriptions. In this paper, we process and analyze two of Symantec’s online threat description corpora. The Anti-Virus (AV) corpus contains descriptions of more than 12,400 threats detected by Symantec’s AV, and the Intrusion Prevention System (IPS) corpus contains descriptions of more than 2,700 attacks detected by Symantec’s IPS. In our analysis, we quantify the over time evolution of threat severity and type in the corpora. We also assess the amount of time Symantec takes to release signatures for newly discovered threats. Our analysis indicates that a very small minority of threats in the AV corpus are high-severity, whereas the majority of attacks in the IPS corpus are high-severity. Moreover, we find that the prevalence of different threat types such as worms and viruses in the corpora varies considerably over time. Finally, we find that Symantec prioritizes releasing signatures for fast propagating threats.

Flavio Medeiros, Christian Kästner, Marcio Ribeiro, Sarah Nadi, Rohit Gheyl.  2015.  The Love/Hate Relationship with The C Preprocessor: An Interview Study.. European Conference on Object-Oriented Programming (ECOOP).

The C preprocessor has received strong criticism in academia, among others regarding separation of concerns, error proneness, and code obfuscation, but is widely used in practice. Many (mostly academic) alternatives to the preprocessor exist, but have not been adopted in practice. Since developers continue to use the preprocessor despite all criticism and research, we ask how practitioners perceive the C preprocessor. We performed interviews with 40 developers, used grounded theory to analyze the data, and cross-validated the results with data from a survey among 202 developers, repository mining, and results from previous studies. In particular, we investigated four research questions related to why the preprocessor is still widely used in practice, common problems, alternatives, and the impact of undisciplined annotations. Our study shows that developers are aware of the criticism the C preprocessor receives, but use it nonetheless, mainly for portability and variability. Many developers indicate that they regularly face preprocessor-related problems and preprocessor-related bugs. The majority of our interviewees do not see any current C-native technologies that can entirely replace the C preprocessor. However, developers tend to mitigate problems with guidelines, but those guidelines are not enforced consistently. We report the key insights gained from our study and discuss implications for practitioners and researchers on how to better use the C preprocessor to minimize its negative impact.