Visible to the public Biblio

Found 267 results

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
W
Darya Kurilova, Alex Potanin, Jonathan Aldrich.  2014.  Wyvern: Impacting Software Security via Programming Language Design. PLATEAU '14 Proceedings of the 5th Workshop on Evaluation and Usability of Programming Languages and Tools.

Breaches of software security affect millions of people, and therefore it is crucial to strive for more secure software systems. However, the effect of programming language design on software security is not easily measured or studied. In the absence of scientific insight, opinions range from those that claim that programming language design has no effect on security of the system, to those that believe that programming language design is the only way to provide “high-assurance software.” In this paper, we discuss how programming language design can impact software security by looking at a specific example: the Wyvern programming language. We report on how the design of the Wyvern programming language leverages security principles, together with hypotheses about how usability impacts security, in order to prevent command injection attacks. Furthermore, we discuss what security principles we considered in Wyvern’s design. 

Kurilova, Darya, Potanin, Alex, Aldrich, Jonathan.  2014.  Wyvern: Impacting Software Security via Programming Language Design.. Workshop on Evaluation and Usability of Programming Languages and Tools (PLATEAU), 2014.

Breaches of software security affect millions of people, and therefore it is crucial to strive for more secure software systems. However, the effect of programming language design on software security is not easily measured or studied. In the absence of scientific insight, opinions range from those that claim that programming language design has no effect on security of the system, to those that believe that programming language design is the only way to provide “high-assurance software.” In this paper, we discuss how programming language design can impact software security by looking at a specific example: the Wyvern programming language. We report on how the design of the Wyvern programming language leverages security principles, together with hypotheses about how usability impacts security, in order to prevent command injection attacks. Furthermore, we discuss what security principles we considered in Wyvern’s design.

Ligia Nistor, Darya Kurilova, Stephanie Balzer, Benjamin Chung, Alex Potanin, Jonathan Aldrich.  2013.  Wyvern: a simple, typed, and pure object-oriented language. MASPEGHI '13 Proceedings of the 5th Workshop on MechAnisms for SPEcialization, Generalization and inHerItance.

The simplest and purest practical object-oriented language designs today are seen in dynamically-typed languages, such as Smalltalk and Self. Static types, however, have potential benefits for productivity, security, and reasoning about programs. In this paper, we describe the design of Wyvern, a statically typed, pure object-oriented language that attempts to retain much of the simplicity and expressiveness of these iconic designs.

Our goals lead us to combine pure object-oriented and functional abstractions in a simple, typed setting. We present a foundational object-based language that we believe to be as close as one can get to simple typed lambda calculus while keeping object-orientation. We show how this foundational language can be translated to the typed lambda calculus via standard encodings. We then define a simple extension to this language that introduces classes and show that classes are no more than sugar for the foundational object-based language. Our future intention is to demonstrate that modules and other object-oriented features can be added to our language as not more than such syntactical extensions while keeping the object-oriented core as pure as possible.

The design of Wyvern closely follows both historical and modern ideas about the essence of object-orientation, suggesting a new way to think about a minimal, practical, typed core language for objects.

Nistor, Ligia, Kurilova, Darya, Balzer, Stephanie, Chung, Benjamin, Potanin, Alex, Aldrich, Jonathan.  2013.  Wyvern: A Simple, Typed, and Pure Object-Oriented Language. Workshop on Mechanisms for Specialization, Generalization, and Inheritance (MASPEGHI), 2013.

The simplest and purest practical object-oriented language designs
today are seen in dynamically-typed languages, such as Smalltalk
and Self. Static types, however, have potential benefits for productivity,
security, and reasoning about programs. In this paper, we describe
the design of Wyvern, a statically typed, pure object-oriented
language that attempts to retain much of the simplicity and expressiveness
of these iconic designs.
Our goals lead us to combine pure object-oriented and functional
abstractions in a simple, typed setting. We present a foundational
object-based language that we believe to be as close as
one can get to simple typed lambda calculus while keeping objectorientation.
We show how this foundational language can be translated
to the typed lambda calculus via standard encodings. We then
define a simple extension to this language that introduces classes
and show that classes are no more than sugar for the foundational
object-based language. Our future intention is to demonstrate that
modules and other object-oriented features can be added to our language
as not more than such syntactical extensions while keeping
the object-oriented core as pure as possible.
The design of Wyvern closely follows both historical and modern
ideas about the essence of object-orientation, suggesting a new
way to think about a minimal, practical, typed core language for
objects.

Welk, A., Zielinska, O., Tembe, R., Xe, G., Hong, K. W., Murphy-Hill, E., Mayhorn, C. B..  In Press.  Will the “Phisher-men” Reel you in? Assessing Individual Differences in a Phishing Detection Task International Journal of Cyber Behavior, Psychology, and Learning. .

Phishing is an act of technology-based deception that targets individuals to obtain information. To minimize the number of phishing attacks, factors that influence the ability to identify phishing attempts must be examined. The present study aimed to determine how individual differences relate to performance on a phishing task. Undergraduate students completed a questionnaire designed to assess impulsivity, trust, personality characteristics, and Internet/security habits. Participants performed an email task where they had to discriminate between legitimate emails and phishing attempts. Researchers assessed performance in terms of correctly identifying all email types (overall accuracy) as well as accuracy in identifying phishing emails (phishing accuracy). Results indicated that overall and phishing accuracy each possessed unique trust, personality, and impulsivity predictors, but shared one significant behavioral predictor. These results present distinct predictors of phishing susceptibility that should be incorporated in the development of anti-phishing technology and training.

[Anonymous].  2017.  Which Factors Influence Practitioners’ Usage of Build Automation Tools? 3rd International Workshop on Rapid Continuous Software Engineering (RCoSE) 2017.

Even though build automation tools help to reduce errors and rapid releases of software changes, use of build automation tools is not widespread amongst software practitioners. Software practitioners perceive build automation tools as complex, which can hinder the adoption of these tools. How well founded such perception is, can be determined by
systematic exploration of adoption factors that influence usage of build automation tools. The goal of this paper is to aid software practitioners in increasing their usage of build
automation tools by identifying the adoption factors that influence usage of these tools. We conducted a survey to empirically identify the adoption factors that influence usage of
build automation tools. We obtained survey responses from 268 software professionals who work at NestedApps, Red Hat, as well as contribute to open source software. We observe that adoption factors related to complexity do not have the strongest influence on usage of build automation tools. Instead, we observe compatibility-related adoption factors, such as adjustment with existing tools, and adjustment with practitioner’s existing workflow, to have influence on usage of build automation tools with greater importance. Findings from our paper suggest that usage of build automation tools might increase if: build automation tools fit well with practitioners’ existing workflow and tool usage; and usage of build automation tools are made more visible among practitioners’ peers.

Rahman, Akond, Partho, Asif, Meder, David, Williams, Laurie.  2017.  Which Factors Influence Practitioners' Usage of Build Automation Tools? Proceedings of the 3rd International Workshop on Rapid Continuous Software Engineering. :20–26.

Even though build automation tools help to reduce errors and rapid releases of software changes, use of build automation tools is not widespread amongst software practitioners. Software practitioners perceive build automation tools as complex, which can hinder the adoption of these tools. How well founded such perception is, can be determined by systematic exploration of adoption factors that influence usage of build automation tools. The goal of this paper is to aid software practitioners in increasing their usage of build automation tools by identifying the adoption factors that influence usage of these tools. We conducted a survey to empirically identify the adoption factors that influence usage of build automation tools. We obtained survey responses from 268 software professionals who work at NestedApps, Red Hat, as well as contribute to open source software. We observe that adoption factors related to complexity do not have the strongest influence on usage of build automation tools. Instead, we observe compatibility-related adoption factors, such as adjustment with existing tools, and adjustment with practitioner's existing workflow, to have influence on usage of build automation tools with greater importance. Findings from our paper suggest that usage of build automation tools might increase if: build automation tools fit well with practitioners' existing workflow and tool usage; and usage of build automation tools are made more visible among practitioners' peers.

Sarah Nadi, Thorsten Berger, Christian Kästner, Krzysztof Czarnecki.  2015.  Where Do Configuration Constraints Stem From? An Extraction Approach and an Empirical Study IEEE Transactions on Software Engineering. 41(8)

Highly configurable systems allow users to tailor software to specific needs. Valid combinations of configuration options are often restricted by intricate constraints. Describing options and constraints in a variability model allows reasoning about the supported configurations. To automate creating and verifying such models, we need to identify the origin of such constraints. We propose a static analysis approach, based on two rules, to extract configuration constraints from code. We apply it on four highly configurable systems to evaluate the accuracy of our approach and to determine which constraints are recoverable from the code. We find that our approach is highly accurate (93% and 77% respectively) and that we can recover 28% of existing constraints. We complement our approach with a qualitative study to identify constraint sources, triangulating results from our automatic extraction, manual inspections, and interviews with 27 developers. We find that, apart from low-level implementation dependencies, configuration constraints enforce correct runtime behavior, improve users' configuration experience, and prevent corner cases. While the majority of constraints is extractable from code, our results indicate that creating a complete model requires further substantial domain knowledge and testing. Our results aim at supporting researchers and practitioners working on variability model engineering, evolution, and verification techniques.

V
Momin Malik, Jurgen Pfeffer, Gabriel Ferreira, Christian Kästner.  2016.  Visualizing the variational callgraph of the Linux Kernel: An approach for reasoning about dependencies. HotSos '16 Proceedings of the Symposium and Bootcamp on the Science of Security.

Software developers use #ifdef statements to support code configurability, allowing software product diversification. But because functions can be in many executions paths that depend on complex combinations of configuration options, the introduction of an #ifdef for a given purpose (such as adding a new feature to a program) can enable unintended function calls, which can be a source of vulnerabilities. Part of the difficulty lies in maintaining mental models of all dependencies. We propose analytic visualizations of thevariational callgraph to capture dependencies across configurations and create visualizations to demonstrate how it would help developers visually reason through the implications of diversification, for example through visually doing change impact analysis.

U
Lee, Da Young, Vouk, Mladen A., Williams, Laurie.  2013.  Using software reliability models for security assessment — Verification of assumptions. IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), 2013. :pp23-24.

Can software reliability models be used to assess software security? One of the issues is that security problems are relatively rare under “normal” operational profiles, while “classical” reliability models may not be suitable for use in attack conditions. We investigated a range of Fedora open source software security problems to see if some of the basic assumptions behind software reliability growth models hold for discovery of security problems in non-attack situations. We find that in some cases, under “normal” operational use, security problem detection process may be described as a Poisson process. In those cases, we can use appropriate classical software reliability growth models to assess “security reliability” of that software in non-attack situations.We analyzed security problem discovery rate for RedHat Fedora. We find that security problems are relatively rare, their rate of discovery appears to be relatively constant under “normal” (non-attack) conditions. Discovery process often appears to satisfy Poisson assumption opening doors to use of classical reliability models. We illustrated using Yamada S-shaped model fit to v15 that in some cases such models may be effective in predicting the number of remaining security problems, and thus may offer a way of assessing security “quality” of the software product (although not necessarily its behavior under an attack).

Venkatakrishnan, Roopak, Vouk, Mladen A..  2016.  Using Redundancy to Detect Security Anomalies: Towards IoT security attack detectors. ACM Ubiquity. 2016(January):1-19.

Cyber-attacks and breaches are often detected too late to avoid damage. While "classical" reactive cyber defenses usually work only if we have some prior knowledge about the attack methods and "allowable" patterns, properly constructed redundancy-based anomaly detectors can be more robust and often able to detect even zero day attacks. They are a step toward an oracle that uses knowable behavior of a healthy system to identify abnormalities. In the world of Internet of Things (IoT), security, and anomalous behavior of sensors and other IoT components, will be orders of magnitude more difficult unless we make those elements security aware from the start. In this article we examine the ability of redundancy-based anomaly detectors to recognize some high-risk and difficult to detect attacks on web servers---a likely management interface for many IoT stand-alone elements. In real life, it has taken long, a number of years in some cases, to identify some of the vulnerabilities and related attacks. We discuss practical relevance of the approach in the context of providing high-assurance Web-services that may belong to autonomous IoT applications and devices.

Aiping Xiong, Robert W. Proctor, Ninghui Li, Weining Yang.  2016.  Use of Warnings for Instructing Users How to Detect Phishing Webpages. 46th Annual Meeting of the Society for Computers in Psychology.

The ineffectiveness of phishing warnings has been attributed to users' poor comprehension of the warning. However, the effectiveness of a phishing warning is typically evaluated at the time when users interact with a suspected phishing webpage, which we call the effect with phishing warning. Nevertheless, users' improved phishing detection when the warning is absent—or the effect of the warning—is the ultimate goal to prevent users from falling for phishing scams. We conducted an online study to evaluate the effect with and of several phishing warning variations, varying the point at which the warning was presented and whether procedural knowledge instruction was included in the warning interface. The current Chrome phishing warning was also included as a control. 360 Amazon Mechanical-Turk workers made submission; 500¬ word maximum for symposia) decisions about 10 login webpages (8 authentic, 2 fraudulent) with the aid of warning (first phase). After a short distracting task, the workers made the same decisions about 10 different login webpages (8 authentic, 2 fraudulent) without warning. In phase one, the compliance rates with two proposed warning interfaces (98% and 94%) were similar to those of the Chrome warning (98%), regardless of when the warning was presented. In phase two (without warning), performance was better for the condition in which warning with procedural knowledge instruction was presented before the phishing webpage in phase one, suggesting a better of effect than for the other conditions. With the procedural knowledge of how to determine a webpage’s legitimacy, users identified phishing webpages more accurately even without the warning being presented.

Aviv, Adam J, Fichter, Dane.  2014.  Understanding visual perceptions of usability and security of Android's graphical password pattern. Proceedings of the 30th Annual Computer Security Applications Conference. :286–295.
Ü
Amit Vasudevan, Sagar Chaki, Limin Jia, Anupam Datta.  2016.  überSpark: Enforcing Verifiable Object Abstractions for Automated Compositional Security Analysis of a Hypervisor. 25th USENIX Security Symposium (USENIX Security 16).

We present überSpark (üSpark), an innovative architecture for compositional verification of security properties of extensible hypervisors written in C and Assembly. üSpark comprises two key ideas: (i) endowing low-level system software with abstractions found in higher-level languages (e.g., objects, interfaces, function-call semantics for implementations of interfaces, access control on interfaces, concurrency and serialization), enforced using a combination of commodity hardware mechanisms and lightweight static analysis; and (ii) interfacing with platform hardware by programming in Assembly using an idiomatic style (called CASM) that is verifiable via tools aimed at C, while retaining its performance and low-level access to hardware. After verification, the C code is compiled using a certified compiler while the CASM code is translated into its corresponding Assembly instructions. Collectively, these innovations enable compositional verification of security invariants without sacrificing performance. We validate üSpark by building and verifying security invariants of an existing open-source commodity x86 micro-hypervisor and several of its extensions, and demonstrating only minor performance overhead with low verification costs.

T
Cyrus Omar, Benjamin Chung, Darya Kurilova, Alex Potanin, Jonathan Aldrich.  2013.  Type-directed, whitespace-delimited parsing for embedded DSLs. GlobalDSL '13 Proceedings of the First Workshop on the Globalization of Domain Specific Languages.

Domain-specific languages improve ease-of-use, expressiveness and verifiability, but defining and using different DSLs within a single application remains difficult. We introduce an approach for embedded DSLs where 1) whitespace delimits DSL-governed blocks, and 2) the parsing and type checking phases occur in tandem so that the expected type of the block determines which domain-specific parser governs that block. We argue that this approach occupies a sweet spot, providing high expressiveness and ease-of-use while maintaining safe composability. We introduce the design, provide examples and describe an ongoing implementation of this strategy in the Wyvern programming language. We also discuss how a more conventional keyword-directed strategy for parsing of DSLs can arise as a special case of this type-directed strategy. 

[Anonymous].  2013.  Type-Directed, Whitespace-Delimited Parsing for Embedded DSLs. Workshop on the Globalization of Domain Specific Languages (GlobalDSL), 2013.

Domain-specific languages improve ease-of-use, expressiveness and
verifiability, but defining and using different DSLs within a single
application remains difficult. We introduce an approach for embedded
DSLs where 1) whitespace delimits DSL-governed blocks, and
2) the parsing and type checking phases occur in tandem so that
the expected type of the block determines which domain-specific
parser governs that block. We argue that this approach occupies
a sweet spot, providing high expressiveness and ease-of-use while
maintaining safe composability. We introduce the design, provide
examples and describe an ongoing implementation of this strategy
in the Wyvern programming language. We also discuss how a more
conventional keyword-directed strategy for parsing of DSLs can
arise as a special case of this type-directed strategy.

Jin, Richeng, He, Xiaofan, Dai, Huaiyu.  2017.  On the Tradeoff Between Privacy and Utility in Collaborative Intrusion Detection Systems-A Game Theoretical Approach. Proceedings of the Hot Topics in Science of Security: Symposium and Bootcamp. :45–51.

Intrusion Detection Systems (IDSs) are crucial security mechanisms widely deployed for critical network protection. However, conventional IDSs become incompetent due to the rapid growth in network size and the sophistication of large scale attacks. To mitigate this problem, Collaborative IDSs (CIDSs) have been proposed in literature. In CIDSs, a number of IDSs exchange their intrusion alerts and other relevant data so as to achieve better intrusion detection performance. Nevertheless, the required information exchange may result in privacy leakage, especially when these IDSs belong to different self-interested organizations. In order to obtain a quantitative understanding of the fundamental tradeoff between the intrusion detection accuracy and the organizations' privacy, a repeated two-layer single-leader multi-follower game is proposed in this work. Based on our game-theoretic analysis, we are able to derive the expected behaviors of both the attacker and the IDSs and obtain the utility-privacy tradeoff curve. In addition, the existence of Nash equilibrium (NE) is proved and an asynchronous dynamic update algorithm is proposed to compute the optimal collaboration strategies of IDSs. Finally, simulation results are shown to validate the analysis.

Mohammed Alsaleh, Ehab Al-Shaer.  2016.  Towards Automated Verification of Active Cyber Defense Strategies on Software Defined Networks. ACM CCS SafeConfig '16 Proceedings of the 2016 ACM Workshop on Automated Decision Making for Active Cyber Defense:.
Breaux, Travis, Hibshi, Hanan, Rao, Ashwini, Lehker, Jean-Michel.  2012.  Towards a Framework for Pattern Experimentation: Understanding empirical validity in requirements engineering patterns. IEEE 2nd Workshop on Requirements Engineering Patterns (RePa'12).

Despite the abundance of information security guidelines, system developers have difficulties implementing technical solutions that are reasonably secure. Security patterns are one possible solution to help developers reuse security knowledge. The challenge is that it takes experts to develop security patterns. To address this challenge, we need a framework to identify and assess patterns and pattern application practices that are accessible to non-experts. In this paper, we narrowly define what we mean by patterns by focusing on requirements patterns and the considerations that may inform how we identify and validate patterns for knowledge reuse. We motivate this discussion using examples from the requirements pattern literature and theory in cognitive psychology.

Travis Breaux, Ashwini Rao, Jean-Michel Lehker.  2012.  Towards a framework for pattern experimentation: Understanding empirical validity in requirements engineering patterns. 2012 Second IEEE International Workshop on Requirements Patterns (RePa).

Despite the abundance of information security guidelines, system developers have difficulties implementing technical solutions that are reasonably secure. Security patterns are one possible solution to help developers reuse security knowledge. The challenge is that it takes experts to develop security patterns. To address this challenge, we need a framework to identify and assess patterns and pattern application practices that are accessible to non-experts. In this paper, we narrowly define what we mean by patterns by focusing on requirements patterns and the considerations that may inform how we identify and validate patterns for knowledge reuse. We motivate this discussion using examples from the requirements pattern literature and theory in cognitive psychology.

Cyrus Omar, Ian Voysey, Michael Hilton, Joshua Sunshine, Claire Le Goues, Jonathan Aldrich, Matthew Hammer.  2017.  Toward Semantic Foundations for Program Editors. 2nd Summit on Advances in Programming Languages (SNAPL 2017).

Programming language definitions assign formal meaning to complete programs. Programmers, however, spend a substantial amount of time interacting with incomplete programs -- programs with holes, type inconsistencies and binding inconsistencies -- using tools like program editors and live programming environments (which interleave editing and evaluation). Semanticists have done comparatively little to formally characterize (1) the static and dynamic semantics of incomplete programs; (2) the actions available to programmers as they edit and inspect incomplete programs; and (3) the behavior of editor services that suggest likely edit actions to the programmer based on semantic information extracted from the incomplete program being edited, and from programs that the system has encountered in the past. As such, each tool designer has largely been left to develop their own ad hoc heuristics. 
This paper serves as a vision statement for a research program that seeks to develop these "missing" semantic foundations. Our hope is that these contributions, which will take the form of a series of simple formal calculi equipped with a tractable metatheory, will guide the design of a variety of current and future interactive programming tools, much as various lambda calculi have guided modern language designs. Our own research will apply these principles in the design of Hazel, an experimental live lab notebook programming environment designed for data science tasks. We plan to co-design the Hazel language with the editor so that we can explore concepts such as edit-time semantic conflict resolution mechanisms and mechanisms that allow library providers to install library-specific editor services.

Ozgur Kafali, Munindar P. Singh, Laurie Williams.  2016.  Toward a Normative Approach for Forensicability: Extended Abstract. Proceedings of the International Symposium and Bootcamp on the Science of Security (HotSoS). :65-67.

Sociotechnical systems (STSs), where users interact with software components, support automated logging, i.e., what a user has performed in the system. However, most systems do not implement automated processes for inspecting the logs when a misuse happens. Deciding what needs to be logged is crucial as excessive amounts of logs might be overwhelming for human analysts to inspect. The goal of this research is to aid software practitioners to implement automated forensic logging by providing a systematic method of using attackers' malicious intentions to decide what needs to be logged. We propose Lokma: a normative framework to construct logging rules for forensic knowledge. We describe the general forensic process of Lokma, and discuss related directions.

Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini, James Hester, Ram Krishnan, Jaspreet Bhatia, Travis Breaux, Jianwei Niu.  2016.  Toward a framework for detecting privacy policy violations in android application code. ICSE '16 Proceedings of the 38th International Conference on Software Engineering.

Mobile applications frequently access sensitive personal information to meet user or business requirements. Because such information is sensitive in general, regulators increasingly require mobile-app developers to publish privacy policies that describe what information is collected. Furthermore, regulators have fined companies when these policies are inconsistent with the actual data practices of mobile apps. To help mobile-app developers check their privacy policies against their apps' code for consistency, we propose a semi-automated framework that consists of a policy terminology-API method map that links policy phrases to API methods that produce sensitive information, and information flow analysis to detect misalignments. We present an implementation of our framework based on a privacy-policy-phrase ontology and a collection of mappings from API methods to policy phrases. Our empirical evaluation on 477 top Android apps discovered 341 potential privacy policy violations.