Visible to the public Biblio

Found 267 results

Submitted
Christopher Theisen, Brendan Murphy, Kim Herzig, Laurie Williams.  Submitted.  Risk-Based Attack Surface Approximation: How Much Data is Enough? International Conference on Software Engineering (ICSE) Software Engineering in Practice (SEIP) 2017.

Proactive security reviews and test efforts are a necessary component of the software development lifecycle. Resource limitations often preclude reviewing the entire code
base. Making informed decisions on what code to review can improve a team’s ability to find and remove vulnerabilities. Risk-based attack surface approximation (RASA) is a technique that uses crash dump stack traces to predict what code may contain exploitable vulnerabilities. The goal of this research is to help software development teams prioritize security efforts by the efficient development of a risk-based attack surface approximation. We explore the use of RASA using Mozilla Firefox and Microsoft Windows stack traces from crash dumps. We create RASA at the file level for Firefox, in which the 15.8% of the files that were part of the approximation contained 73.6% of the vulnerabilities seen for the product. We also explore the effect of random sampling of crashes on the approximation, as it may be impractical for organizations to store and process every crash received. We find that 10-fold random sampling of crashes at a rate of 10% resulted in 3% less vulnerabilities identified than using the entire set of stack traces for Mozilla Firefox. Sampling crashes in Windows 8.1 at a rate of 40% resulted in insignificant differences in vulnerability and file coverage as compared to a rate of 100%.

In Press
Welk, A., Zielinska, O., Tembe, R., Xe, G., Hong, K. W., Murphy-Hill, E., Mayhorn, C. B..  In Press.  Will the “Phisher-men” Reel you in? Assessing Individual Differences in a Phishing Detection Task International Journal of Cyber Behavior, Psychology, and Learning. .

Phishing is an act of technology-based deception that targets individuals to obtain information. To minimize the number of phishing attacks, factors that influence the ability to identify phishing attempts must be examined. The present study aimed to determine how individual differences relate to performance on a phishing task. Undergraduate students completed a questionnaire designed to assess impulsivity, trust, personality characteristics, and Internet/security habits. Participants performed an email task where they had to discriminate between legitimate emails and phishing attempts. Researchers assessed performance in terms of correctly identifying all email types (overall accuracy) as well as accuracy in identifying phishing emails (phishing accuracy). Results indicated that overall and phishing accuracy each possessed unique trust, personality, and impulsivity predictors, but shared one significant behavioral predictor. These results present distinct predictors of phishing susceptibility that should be incorporated in the development of anti-phishing technology and training.

2022
Munindar P. Singh.  2022.  Consent as a Foundation for Responsible Autonomy. Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI). 36
This paper focuses on a dynamic aspect of responsible autonomy, namely, to make intelligent agents be responsible at run time. That is, it considers settings where decision making by agents impinges upon the outcomes perceived by other agents. For an agent to act responsibly, it must accommodate the desires and other attitudes of its users and, through other agents, of their users. The contribution of this paper is twofold. First, it provides a conceptual analysis of consent, its benefits and misuses, and how understanding consent can help achieve responsible autonomy. Second, it outlines challenges for AI (in particular, for agents and multiagent systems) that merit investigation to form as a basis for modeling consent in multiagent systems and applying consent to achieve responsible autonomy.
Blue Sky Track
2020
Akond Rahman, Effat Farhana, Chris Parnin, Laurie Williams.  2020.  Gang of Eight: A Defect Taxonomy for Infrastructure as Code Scripts. International Conference of Softare Engineering (ICSE).

Defects in infrastructure as code (IaC) scripts can have serious
consequences, for example, creating large-scale system outages. A
taxonomy of IaC defects can be useful for understanding the nature
of defects, and identifying activities needed to fix and prevent
defects in IaC scripts. The goal of this paper is to help practitioners
improve the quality of infrastructure as code (IaC) scripts by developing
a defect taxonomy for IaC scripts through qualitative analysis.
We develop a taxonomy of IaC defects by applying qualitative analysis
on 1,448 defect-related commits collected from open source
software (OSS) repositories of the Openstack organization. We conduct
a survey with 66 practitioners to assess if they agree with the
identified defect categories included in our taxonomy. We quantify
the frequency of identified defect categories by analyzing 80,425
commits collected from 291 OSS repositories spanning across 2005
to 2019.


Our defect taxonomy for IaC consists of eight categories, including
a category specific to IaC called idempotency (i.e., defects that
lead to incorrect system provisioning when the same IaC script is
executed multiple times). We observe the surveyed 66 practitioners
to agree most with idempotency. The most frequent defect category
is configuration data i.e., providing erroneous configuration data
in IaC scripts. Our taxonomy and the quantified frequency of the
defect categories may help in advancing the science of IaC script
quality.

Akond Rahman, Effat Farhana, Laurie Williams.  2020.  The ‘as code’ activities: development anti-patterns for infrastructure as code. Empirical Software Engineering . 25(3467)

Context:

The ‘as code’ suffix in infrastructure as code (IaC) refers to applying software engineering activities, such as version control, to maintain IaC scripts. Without the application of these activities, defects that can have serious consequences may be introduced in IaC scripts. A systematic investigation of the development anti-patterns for IaC scripts can guide practitioners in identifying activities to avoid defects in IaC scripts. Development anti-patterns are recurring development activities that relate with defective IaC scripts.

Goal:

The goal of this paper is to help practitioners improve the quality of infrastructure as code (IaC) scripts by identifying development activities that relate with defective IaC scripts.

Methodology:

We identify development anti-patterns by adopting a mixed-methods approach, where we apply quantitative analysis with 2,138 open source IaC scripts and conduct a survey with 51 practitioners.

Findings:

We observe five development activities to be related with defective IaC scripts from our quantitative analysis. We identify five development anti-patterns namely, ‘boss is not around’, ‘many cooks spoil’, ‘minors are spoiler’, ‘silos’, and ‘unfocused contribution’.

Conclusion:

Our identified development anti-patterns suggest the importance of ‘as code’ activities in IaC because these activities are related to quality of IaC scripts.

2019
2017
C. Theisen, K. Herzig, B. Murphy, L. Williams.  2017.  Risk-based attack surface approximation: how much data is enough? 2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP). :273-282.

Proactive security reviews and test efforts are a necessary component of the software development lifecycle. Resource limitations often preclude reviewing the entire code base. Making informed decisions on what code to review can improve a team's ability to find and remove vulnerabilities. Risk-based attack surface approximation (RASA) is a technique that uses crash dump stack traces to predict what code may contain exploitable vulnerabilities. The goal of this research is to help software development teams prioritize security efforts by the efficient development of a risk-based attack surface approximation. We explore the use of RASA using Mozilla Firefox and Microsoft Windows stack traces from crash dumps. We create RASA at the file level for Firefox, in which the 15.8% of the files that were part of the approximation contained 73.6% of the vulnerabilities seen for the product. We also explore the effect of random sampling of crashes on the approximation, as it may be impractical for organizations to store and process every crash received. We find that 10-fold random sampling of crashes at a rate of 10% resulted in 3% less vulnerabilities identified than using the entire set of stack traces for Mozilla Firefox. Sampling crashes in Windows 8.1 at a rate of 40% resulted in insignificant differences in vulnerability and file coverage as compared to a rate of 100%.

Rui Shu, Xiaohui Gu, William Enck.  2017.  A Study of Security Vulnerabilities on Docker Hub. Proceedings of the ACM Conference on Data and Application Security and Privacy (CODASPY).
Rui Shu, Xiaohui Gu, William Enck.  2017.  A Study of Security Vulnerabilities on Docker Hub. Proceedings of the ACM Conference on Data and Application Security and Privacy (CODASPY).

Docker containers have recently become a popular approach to provision multiple applications over shared physical hosts in a more lightweight fashion than traditional virtual machines. This popularity has led to the creation of the Docker Hub registry, which distributes a large number of official and community images. In this paper, we study the state of security vulnerabilities in Docker Hub images. We create a scalable Docker image vulnerability analysis (DIVA) framework that automatically discovers, downloads, and analyzes both official and community images on Docker Hub. Using our framework, we have studied 356,218 images and made the following findings: (1) both official and community images contain more than 180 vulnerabilities on average when considering all versions; (2) many images have not been updated for hundreds of days; and (3) vulnerabilities commonly propagate from parent images to child images. These findings demonstrate a strong need for more automated and systematic methods of applying security updates to Docker images and our current Docker image analysis framework provides a good foundation for such automatic security update.

Yu Wang, University of Illinois at Urbana-Champaign, Matthew Hale, University of Illinois at Urbana-Champaign, Magnus Egerstedt, University of Illinois at Urbana-Champaign, Geir Dullerud, University of Illinois at Urbana-Champaign.  2017.  Differentially Private Objective Functions in Distributed Cloud-based Optimization. 20th World Congress of the International Federations of Automatic Control (IFAC 2017 World Congress).

Abstract—In this work, we study the problem of keeping the objective functions of individual agents "-differentially private in cloud-based distributed optimization, where agents are subject to global constraints and seek to minimize local objective functions. The communication architecture between agents is cloud-based – instead of communicating directly with each other, they oordinate by sharing states through a trusted cloud computer. In this problem, the difficulty is twofold: the objective functions are used repeatedly in every iteration, and the influence of  erturbing them extends to other agents and lasts over time. To solve the problem, we analyze the propagation of perturbations on objective functions over time, and derive an upper bound on them. With the upper bound, we design a noise-adding mechanism that randomizes the cloudbased distributed optimization algorithm to keep the individual objective functions "-differentially private. In addition, we study the trade-off between the privacy of objective functions and the performance of the new cloud-based distributed optimization algorithm with noise. We present simulation results to numerically verify the theoretical results presented.

Karthik Sheshadari, Nirav Ajmeri, Jessica Staddon.  2017.  No (Privacy) News is Good News: An Analysis of New York Times and Guardian Privacy News from 2010 to 2016. Proceedings of 15th Annual Conference on Privacy, Security and Trust (PST). :1-12.
[Anonymous].  2017.  Which Factors Influence Practitioners’ Usage of Build Automation Tools? 3rd International Workshop on Rapid Continuous Software Engineering (RCoSE) 2017.

Even though build automation tools help to reduce errors and rapid releases of software changes, use of build automation tools is not widespread amongst software practitioners. Software practitioners perceive build automation tools as complex, which can hinder the adoption of these tools. How well founded such perception is, can be determined by
systematic exploration of adoption factors that influence usage of build automation tools. The goal of this paper is to aid software practitioners in increasing their usage of build
automation tools by identifying the adoption factors that influence usage of these tools. We conducted a survey to empirically identify the adoption factors that influence usage of
build automation tools. We obtained survey responses from 268 software professionals who work at NestedApps, Red Hat, as well as contribute to open source software. We observe that adoption factors related to complexity do not have the strongest influence on usage of build automation tools. Instead, we observe compatibility-related adoption factors, such as adjustment with existing tools, and adjustment with practitioner’s existing workflow, to have influence on usage of build automation tools with greater importance. Findings from our paper suggest that usage of build automation tools might increase if: build automation tools fit well with practitioners’ existing workflow and tool usage; and usage of build automation tools are made more visible among practitioners’ peers.

Kim, Donghoon, Schaffer, Henry E., Vouk. Mladen A.  2017.  About PaaS Security. Int. J. of Cloud Computing.

Platform as a Service (PaaS) provides middleware resources to cloud customers. As demand for PaaS services increases, so do concerns about the security of PaaS. This paper discusses principal PaaS security and integrity requirements, and vulnerabilities and the corresponding countermeasures. We consider three core cloud elements—multi-tenancy, isolation, and virtualization and how they relate to PaaS services and security trends and concerns such as user and resource isolation, side-channel vulnerabilities in multi-tenant environments, and protection of sensitive data.

Hanan Hibshi, Travis Breaux.  2017.  Reinforcing Security Requirements with Multifactor Quality Measurement. 25th IEEE International Requirements Engineering Conference.

Choosing how to write natural language scenarios is challenging, because stakeholders may over-generalize their descriptions or overlook or be unaware of alternate scenarios. In security, for example, this can result in weak security constraints that are too general, or missing constraints. Another challenge is that analysts are unclear on where to stop generating new scenarios. In this paper, we introduce the Multifactor Quality Method (MQM) to help requirements analysts to empirically collect system constraints in scenarios based on elicited expert preferences. The method combines quantitative statistical analysis to measure system quality with qualitative coding to extract new requirements. The method is bootstrapped with minimal analyst expertise in the domain affected by the quality area, and then guides an analyst toward selecting expert-recommended requirements to monotonically increase system quality. We report the results of applying the method to security. This include 550 requirements elicited from 69 security experts during a bootstrapping stage, and subsequent evaluation of these results in a verification stage with 45 security experts to measure the overall improvement of the new requirements. Security experts in our studies have an average of 10 years of experience. Our results show that using our method, we detect an increase in the security quality ratings collected in the verification stage. Finally, we discuss how our proposed method helps to improve security requirements elicitation, analysis, and measurement. 

Ryan Wagner, Matthew Fredrikson, David Garlan.  2017.  An Advanced Persistent Threat Exemplar.

Security researchers do not have sufficient example systems for conducting research on advanced persistent threats, and companies and agencies that experience attacks in the wild are reluctant to release detailed information that can be examined. In this paper, we describe an Advanced Persistent Threat Exemplar that is intended to provide a real-world attack scenario with sufficient complexity for reasoning about defensive system adaptation, while not containing so much information as to be too complex. It draws from actual published attacks and experiences as a security engineer by the authors.

Casey Canfield, Alex Davis, Baruch Fischhoff, Alain Forget, Sarah Pearman, Jeremy Thomas.  2017.  Replication: Challenges in Using Data Logs to Validate Phishing Detection Ability Metrics. 13th Symposium on Usable Privacy and Security (SOUPS).

The Security Behavior Observatory (SBO) is a longitudinal field-study of computer security habits that provides a novel dataset for validating computer security metrics. This paper demonstrates a new strategy for validating phishing detection ability metrics by comparing performance on a phishing signal detection task with data logs found in the SBO. We report: (1) a test of the robustness of performance on the signal detection task by replicating Canfield, Fischhoff and Davis (2016), (2) an assessment of the task's construct validity, and (3) evaluation of its predictive validity using data logs. We find that members of the SBO sample had similar signal detection ability compared to members of the previous mTurk sample and that performance on the task correlated with the Security Behavior Intentions Scale (SeBIS). However, there was no evidence of predictive validity, as the signal detection task performance was unrelated to computer security outcomes in the SBO, including the presence of malicious URLs, malware, and malicious files. We discuss the implications of these findings and the challenges of comparing behavior on structured experimental tasks to behavior in complex real-world settings.

Darya Melicher(Kurilova), Yangqingwei Shi, Alex Potanin, Jonathan Aldrich.  2017.  A Capability-Based Module System for Authority Control. European Conference on Object-Oriented Programming (ECOOP).

The principle of least authority states that each component of the system should be given authority to access only the information and resources that it needs for its operation. This principle is fundamental to the secure design of software systems, as it helps to limit an application’s attack surface and to isolate vulnerabilities and faults. Unfortunately, current programming languages do not provide adequate help in controlling the authority of application modules, an issue that is particularly acute in the case of untrusted third-party extensions. In this paper, we present a language design that facilitates controlling the authority granted to each application module. The key technical novelty of our approach is that modules are firstclass, statically typed capabilities. First-class modules are essentially objects, and so we formalize our module system by translation into an object calculus and prove that the core calculus is typesafe and authority-safe. Unlike prior formalizations, our work defines authority non-transitively, allowing engineers to reason about software designs that use wrappers to provide an attenuated version of a more powerful capability. Our approach allows developers to determine a module’s authority by examining the capabilities passed as module arguments when the module is created, or delegated to the module later during execution. The type system facilitates this by identifying which objects provide capabilities to sensitive resources, and by enabling security architects to examine the capabilities passed into and out of a module based only on the module’s interface, without needing to examine the module’s implementation code. An implementation of the module system and illustrative examples in the Wyvern programming language suggest that our approach can be a practical way to control module authority.

Alireza Sadeghi, Naeem Esfahani, Sam Malek.  2017.  Ensuring the Consistency of Adaptation through Inter- and Intra-Component Dependency Analysis. ACM Transactions on Software Engineering and Methodology (TOSEM). 26(1)

Dynamic adaptation should not leave a software system in an inconsistent state, as it could lead to failure. Prior research has used inter-component dependency models of a system to determine a safe interval for the adaptation of its components, where the most important tradeoff is between disruption in the operations of the system and reachability of safe intervals. This article presents Savasana, which automatically analyzes a software system’s code to extract both inter- and intra-component dependencies. In this way, Savasana is able to obtain more fine-grained models compared to previous approaches. Savasana then uses the detailed models to find safe adaptation intervals that cannot be determined using techniques from prior research. This allows Savasana to achieve a better tradeoff between disruption and reachability. The article demonstrates how Savasana infers safe adaptation intervals for components of a software system under various use cases and conditions.

Alireza Sadeghi, Hamid Bagheri, Joshua Garcia, Sam Malek.  2017.  A Taxonomy and Qualitative Comparison of Program Analysis Techniques for Security Assessment of Android Software. IEEE Transactions on Software Engineering. 43(6)

In parallel with the meteoric rise of mobile software, we are witnessing an alarming escalation in the number and sophistication of the security threats targeted at mobile platforms, particularly Android, as the dominant platform. While existing research has made significant progress towards detection and mitigation of Android security, gaps and challenges remain. This paper contributes a comprehensive taxonomy to classify and characterize the state-of-the-art research in this area. We have carefully followed the systematic literature review process, and analyzed the results of more than 300 research papers, resulting in the most comprehensive and elaborate investigation of the literature in this area of research. The systematic analysis of the research literature has revealed patterns, trends, and gaps in the existing literature, and underlined key challenges and opportunities that will shape the focus of future research efforts.

Tingting Yu, Witawas Srisa-an, Gregg Rothermel.  2017.  An automated framework to support testing for process-level race conditions. Software: Testing, Verification, and Reliability .

Race conditions are difficult to detect because they usually occur only under specific execution interleavings. Numerous program analysis and testing techniques have been proposed to detect race conditions between threads on single applications. However, most of these techniques neglect races that occur at the process level due to complex system event interactions. This article presents a framework, SIMEXPLORER, that allows engineers to effectively test for process-level race conditions. SIMEXPLORER first uses dynamic analysis techniques to observe system execution, identify program locations of interest, and report faults related to oracles. Next, it uses virtualization to achieve the fine-grained controllability needed to exercise event interleavings that are likely to expose races. We evaluated the effectiveness of SIMEXPLORER on 24 real-world applications containing both known and unknown process-level race conditions. Our results show that SIMEXPLORER is effective at detecting these race conditions, while incurring an overhead that is acceptable given its effectiveness improvements.

Joshua Tan, Lujo Bauer, Joseph Bonneau, Lorrie Cranor, Jeremy Thomas, Blase Ur.  2017.  Can Unicorns Help Users Compare Crypto Key Fingerprints? CHI '17 Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems.

Many authentication schemes ask users to manually compare compact representations of cryptographic keys, known as fingerprints. If the fingerprints do not match, that may signal a man-in-the-middle attack. An adversary performing an attack may use a fingerprint that is similar to the target fingerprint, but not an exact match, to try to fool inattentive users. Fingerprint representations should thus be both usable and secure. We tested the usability and security of eight fingerprint representations under different configurations. In a 661-participant between-subjects experiment, participants compared fingerprints under realistic conditions and were subjected to a simulated attack. The best configuration allowed attacks to succeed 6% of the time; the worst 72%. We find the seemingly effective compare-and-select approach performs poorly for key fingerprints and that graphical fingerprint representations, while intuitive and fast, vary in performance. We identify some fingerprint representations as particularly promising.

Yutaka Tsutano, Shakthi Bachala, Witawas Srisa-an, Gregg Rothermel, Jackson Dinh.  2017.  An Efficient, Robust, and Scalable Approach for Analyzing Interacting Android Apps. 39th International Conference on Software Engineering.

When multiple apps on an Android platform interact, faults and security vulnerabilities can occur. Software engineers need to be able to analyze interacting apps to detect such problems. Current approaches for performing such analyses, however, do not scale to the numbers of apps that may need to be considered, and thus, are impractical for application to realworld scenarios. In this paper, we introduce JITANA, a program analysis framework designed to analyze multiple Android apps simultaneously. By using a classloader-based approach instead of a compiler-based approach such as SOOT, JITANA is able to simultaneously analyze large numbers of interacting apps, perform on-demand analysis of large libraries, and effectively analyze dynamically generated code. Empirical studies of JITANA show that it is substantially more efficient than a state-of-theart approach, and that it can effectively and efficiently analyze complex apps including Facebook, Pokemon Go, and Pandora ´ that the state-of-the-art approach cannot handle.

Junjie Qian, Hong Jiang, Witawas Srisa-an, Sharad Seth.  2017.  Energy-efficient I/O Thread Schedulers for NVMe SSDs on NUMA. CCGrid '17 Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.

Non-volatile memory express (NVMe) based SSDs and the NUMA platform are widely adopted in servers to achieve faster storage speed and more powerful processing capability. As of now, very little research has been conducted to investigate the performance and energy efficiency of the stateof-the-art NUMA architecture integrated with NVMe SSDs, an emerging technology used to host parallel I/O threads. As this technology continues to be widely developed and adopted, we need to understand the runtime behaviors of such systems in order to design software runtime systems that deliver optimal performance while consuming only the necessary amount of energy. This paper characterizes the runtime behaviors of a Linuxbased NUMA system employing multiple NVMe SSDs. Our comprehensive performance and energy-efficiency study using massive numbers of parallel I/O threads shows that the penalty due to CPU contention is much smaller than that due to remote access of NVMe SSDs. Based on this insight, we develop a dynamic “lesser evil” algorithm called ESN, to minimize the impact of these two types of penalties. ESN is an energyefficient profiling-based I/O thread scheduler for managing I/O threads accessing NVMe SSDs on NUMA systems. Our empirical evaluation shows that ESN can achieve optimal I/O throughput and latency while consuming up to 50% less energy and using fewer CPUs.

Michael Coblenz, Whitney Nelson, Jonathan Aldrich, Brad Myers, Joshua Sunshine.  2017.  Glacier: Transitive Class Immutability for Java. 39th International Conference on Software Engineering.

Though immutability has been long-proposed as a way to prevent bugs in software, little is known about how to make immutability support in programming languages effective for software engineers. We designed a new formalism that extends Java to support transitive class immutability, the form of immutability for which there is the strongest empirical support, and implemented that formalism in a tool called Glacier. We applied Glacier successfully to two real-world systems. We also compared Glacier to Java’s final in a user study of twenty participants. We found that even after being given instructions on how to express immutability with final, participants who used final were unable to express immutability correctly, whereas almost all participants who used Glacier succeeded. We also asked participants to make specific changes to immutable classes and found that participants who used final all incorrectly mutated immutable state, whereas almost all of the participants who used Glacier succeeded. Glacier represents a promising approach to enforcing immutability in Java and provides a model for enforcement in other languages.