Visible to the public Biblio

Filters: Keyword is resilience  [Clear All Filters]
Bradley Potteiger, William Emfinger, Himanshu Neema, Xenofon Koutsoukos, CheeYee Tang, Keith Stouffer.  2017.  Evaluating the effects of cyber-attacks on cyber physical systems using a hardware-in-the-loop simulation testbed. Resilience Week (RWS). :177-183.

Cyber-Physical Systems (CPS) consist of embedded computers with sensing and actuation capability, and are integrated into and tightly coupled with a physical system. Because the physical and cyber components of the system are tightly coupled, cyber-security is important for ensuring the system functions properly and safely. However, the effects of a cyberattack on the whole system may be difficult to determine, analyze, and therefore detect and mitigate. This work presents a model based software development framework integrated with a hardware-in-the-loop (HIL) testbed for rapidly deploying CPS attack experiments. The framework provides the ability to emulate low level attacks and obtain platform specific performance measurements that are difficult to obtain in a traditional simulation environment. The framework improves the cybersecurity design process which can become more informed and customized to the production environment of a CPS. The developed framework is illustrated with a case study of a railway transportation system.

Saqib Hasan, Amin Ghafouri, Abhishek Dubey, Gabor Karsai, Xenofon Koutsoukos.  2018.  Vulnerability analysis of power systems based on cyber-attack and defense models. 2018 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1-5.

Reliable operation of power systems is a primary challenge for the system operators. With the advancement in technology and grid automation, power systems are becoming more vulnerable to cyber-attacks. The main goal of adversaries is to take advantage of these vulnerabilities and destabilize the system. This paper describes a game-theoretic approach to attacker / defender modeling in power systems. In our models, the attacker can strategically identify the subset of substations that maximize damage when compromised. However, the defender can identify the critical subset of substations to protect in order to minimize the damage when an attacker launches a cyber-attack. The algorithms for these models are applied to the standard IEEE-14, 39, and 57 bus examples to identify the critical set of substations given an attacker and a defender budget.

Aron Laszka, Waseem Abbas, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2018.  Synergistic Security for the Industrial Internet of Things: Integrating Redundancy, Diversity, and Hardening. IEEE International Conference on Industrial Internet (ICII). :153-158.

As the Industrial Internet of Things (IIot) becomes more prevalent in critical application domains, ensuring security and resilience in the face of cyber-attacks is becoming an issue of paramount importance. Cyber-attacks against critical infrastructures, for example, against smart water-distribution and transportation systems, pose serious threats to public health and safety. Owing to the severity of these threats, a variety of security techniques are available. However, no single technique can address the whole spectrum of cyber-attacks that may be launched by a determined and resourceful attacker. In light of this, we consider a multi-pronged approach for designing secure and resilient IIoT systems, which integrates redundancy, diversity, and hardening techniques. We introduce a framework for quantifying cyber-security risks and optimizing IIoT design by determining security investments in redundancy, diversity, and hardening. To demonstrate the applicability of our framework, we present a case study in water-distribution systems. Our numerical evaluation shows that integrating redundancy, diversity, and hardening can lead to reduced security risk at the same cost.

Xenofon Koutsoukos, Gabor Karsai, Aron Laszka, Himanshu Neema, Bradley Potteiger, Peter Volgyesi, Yevgeniy Vorobeychik, Janos Sztipanovits.  2018.  SURE: A Modeling and Simulation Integration Platform for Evaluation of Secure and Resilient Cyber–Physical Systems. Proceedings of the IEEE. 106:93-112.

The exponential growth of information and communication technologies have caused a profound shift in the way humans engineer systems leading to the emergence of closed-loop systems involving strong integration and coordination of physical and cyber components, often referred to as cyber-physical systems (CPSs). Because of these disruptive changes, physical systems can now be attacked through cyberspace and cyberspace can be attacked through physical means. The paper considers security and resilience as system properties emerging from the intersection of system dynamics and the computing architecture. A modeling and simulation integration platform for experimentation and evaluation of resilient CPSs is presented using smart transportation systems as the application domain. Evaluation of resilience is based on attacker-defender games using simulations of sufficient fidelity. The platform integrates 1) realistic models of cyber and physical components and their interactions; 2) cyber attack models that focus on the impact of attacks to CPS behavior and operation; and 3) operational scenarios that can be used for evaluation of cybersecurity risks. Three case studies are presented to demonstrate the advantages of the platform: 1) vulnerability analysis of transportation networks to traffic signal tampering; 2) resilient sensor selection for forecasting traffic flow; and 3) resilient traffic signal control in the presence of denial-of-service attacks.

Jiani Li, Xenofon Koutsoukos.  2018.  Resilient Distributed Diffusion for Multi-task Estimation. 14th International Conference on Distributed Computing in Sensor Systems (DCOSS). :93-102.

Distributed diffusion is a powerful algorithm for multi-task state estimation which enables networked agents to interact with neighbors to process input data and diffuse infor- mation across the network. Compared to a centralized approach, diffusion offers multiple advantages that include robustness to node and link failures. In this paper, we consider distributed diffusion for multi-task estimation where networked agents must estimate distinct but correlated states of interest by processing streaming data. By exploiting the adaptive weights used for diffusing information, we develop attack models that drive normal agents to converge to states selected by the attacker. The attack models can be used for both stationary and non- stationary state estimation. In addition, we develop a resilient distributed diffusion algorithm under the assumption that the number of compromised nodes in the neighborhood of each normal node is bounded by F and we show that resilience may be obtained at the cost of performance degradation. Finally, we evaluate the proposed attack models and resilient distributed diffusion algorithm using stationary and non-stationary multi- target localization.

Waseem Abbas, Aron Laszka, Xenofon Koutsoukos.  2018.  Improving Network Connectivity and Robustness Using Trusted Nodes With Application to Resilient Consensus. IEEE Transactions on Control of Network Systems. 5:2036-2048.

To observe and control a networked system, especially in failure-prone circumstances, it is imperative that the underlying network structure be robust against node or link failures. A common approach for increasing network robustness is redundancy: deploying additional nodes and establishing new links between nodes, which could be prohibitively expensive. This paper addresses the problem of improving structural robustness of networks without adding extra links. The main idea is to ensure that a small subset of nodes, referred to as the trusted nodes, remains intact and functions correctly at all times. We extend two fundamental metrics of structural robustness with the notion of trusted nodes, network connectivity, and r-robustness, and then show that by controlling the number and location of trusted nodes, any desired connectivity and robustness can be achieved without adding extra links. We study the complexity of finding trusted nodes and construction of robust networks with trusted nodes. Finally, we present a resilient consensus algorithm with trusted nodes and show that, unlike existing algorithms, resilient consensus is possible in sparse networks containing few trusted nodes.

Waseem Abbas, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2014.  Resilient consensus protocol in the presence of trusted nodes. 7th International Symposium on Resilient Control Systems (ISRCS). :1-7.

In this paper, we propose a scheme for a resilient distributed consensus problem through a set of trusted nodes within the network. Currently, algorithms that solve resilient consensus problem demand networks to have high connectivity to overrule the effects of adversaries, or require nodes to have access to some non-local information. In our scheme, we incorporate the notion of trusted nodes to guarantee distributed consensus despite any number of adversarial attacks, even in sparse networks. A subset of nodes, which are more secured against the attacks, constitute a set of trusted nodes. It is shown that the network becomes resilient against any number of attacks whenever the set of trusted nodes form a connected dominating set within the network. We also study a relationship between trusted nodes and the network robustness. Simulations are presented to illustrate and compare our scheme with the existing ones.