Visible to the public Biblio

Found 859 results

Filters: First Letter Of Last Name is A  [Clear All Filters]
[A] B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Adelt, Peer, Koppelmann, Bastian, Mueller, Wolfgang, Scheytt, Christoph.  2020.  A Scalable Platform for QEMU Based Fault Effect Analysis for RISC-V Hardware Architectures. MBMV 2020 - Methods and Description Languages for Modelling and Verification of Circuits and Systems; GMM/ITG/GI-Workshop. :1–8.
Fault effect simulation is a well-established technique for the qualification of robust embedded software and hardware as required by different safety standards. Our article introduces a Virtual Prototype based approach for the fault analysis and fast simulation of a set of automatically generated and target compiled software programs. The approach scales to different RISC-V ISA standard subset configurations and is based on an instruction and hardware register coverage for automatic fault injections of permanent and transient bitflips. The analysis of each software binary evaluates its opcode type and register access coverage including the addressed memory space. Based on this information dedicated sets of fault injected hardware models, i.e., mutants, are generated. The simulation of all mutants conducted with the different binaries finally identifies the cases with a normal termination though executed on a faulty hardware model. They are identified as a subject for further investigations and improvements by the implementation of additional hardware or software safety countermeasures. Our final evaluation results with automatic C code generation, compilation, analysis, and simulation show that QEMU provides an adequate efficient platform, which also scales to more complex scenarios.
Adeniji, V. O., Sibanda, K..  2018.  Analysis of the effect of malicious packet drop attack on packet transmission in wireless mesh networks. 2018 Conference on Information Communications Technology and Society (ICTAS). :1–6.
Wireless mesh networks (WMNs) are known for possessing good attributes such as low up-front cost, easy network maintenance, and reliable service coverage. This has largely made them to be adopted in various environments such as; school campus networks, community networking, pervasive healthcare, office and home automation, emergency rescue operations and ubiquitous wireless networks. The routing nodes are equipped with self-organized and self-configuring capabilities. However, the routing mechanisms of WMNs depend on the collaboration of all participating nodes for reliable network performance. The authors of this paper have noted that most routing algorithms proposed for WMNs in the last few years are designed with the assumption that all the participating nodes will collaboratively be involved in relaying the data packets originated from a source to a multi-hop destination. Such design approach however exposes WMNs to vulnerability such as malicious packet drop attack. This paper presents an evaluation of the effect of the black hole attack with other influential factors in WMNs. In this study, NS-3 simulator was used with AODV as the routing protocol. The results show that the packet delivery ratio and throughput of WMN under attack decreases sharply as compared to WMN free from attack. On an average, 47.41% of the transmitted data packets were dropped in presence of black hole attack.
Adepu, Sridhar, Mathur, Aditya.  2016.  Distributed Detection of Single-Stage Multipoint Cyber Attacks in a Water Treatment Plant. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :449–460.

A distributed detection method is proposed to detect single stage multi-point (SSMP) attacks on a Cyber Physical System (CPS). Such attacks aim at compromising two or more sensors or actuators at any one stage of a CPS and could totally compromise a controller and prevent it from detecting the attack. However, as demonstrated in this work, using the flow properties of water from one stage to the other, a neighboring controller was found effective in detecting such attacks. The method is based on physical invariants derived for each stage of the CPS from its design. The attack detection effectiveness of the method was evaluated experimentally against an operational water treatment testbed containing 42 sensors and actuators. Results from the experiments point to high effectiveness of the method in detecting a variety of SSMP attacks but also point to its limitations. Distributing the attack detection code among various controllers adds to the scalability of the proposed method.

Adesuyi, Tosin A., Kim, Byeong Man.  2019.  Preserving Privacy in Convolutional Neural Network: An ∊-tuple Differential Privacy Approach. 2019 IEEE 2nd International Conference on Knowledge Innovation and Invention (ICKII). :570–573.
Recent breakthrough in neural network has led to the birth of Convolutional neural network (CNN) which has been found to be very efficient especially in the areas of image recognition and classification. This success is traceable to the availability of large datasets and its capability to learn salient and complex data features which subsequently produce a reusable output model (Fθ). The Fθ are often made available (e.g. on cloud as-a-service) for others (client) to train their data or do transfer learning, however, an adversary can perpetrate a model inversion attack on the model Fθ to recover training data, hence compromising the sensitivity of the model buildup data. This is possible because CNN as a variant of deep neural network does memorize most of its training data during learning. Consequently, this has pose a privacy concern especially when a medical or financial data are used as model buildup data. Existing researches that proffers privacy preserving approach however suffer from significant accuracy degradation and this has left privacy preserving model on a theoretical desk. In this paper, we proposed an ϵ-tuple differential privacy approach that is based on neuron impact factor estimation to preserve privacy of CNN model without significant accuracy degradation. We experiment our approach on two large datasets and the result shows no significant accuracy degradation.
Adetomi, A., Enemali, G., Arslan, T..  2017.  Towards an efficient intellectual property protection in dynamically reconfigurable FPGAs. 2017 Seventh International Conference on Emerging Security Technologies (EST). :150–156.

The trend in computing is towards the use of FPGAs to improve performance at reduced costs. An indication of this is the adoption of FPGAs for data centre and server application acceleration by notable technological giants like Microsoft, Amazon, and Baidu. The continued protection of Intellectual Properties (IPs) on the FPGA has thus become both more important and challenging. To facilitate IP security, FPGA vendors have provided bitstream authentication and encryption. However, advancements in FPGA programming technology have engendered a bitstream manipulation technique like partial bitstream relocation (PBR), which is promising in terms of reducing bitstream storage cost and facilitating adaptability. Meanwhile, encrypted bitstreams are not amenable to PBR. In this paper, we present three methods for performing encrypted PBR with varying overheads of resources and time. These methods ensure that PBR can be applied to bitstreams without losing the protection of IPs.

Adetunji, Akinbobola Oluwaseun, Butakov, Sergey, Zavarsky, Pavol.  2018.  Automated Security Configuration Checklist for Apple iOS Devices Using SCAP v1.2. 2018 International Conference on Platform Technology and Service (PlatCon). :1–6.
The security content automation includes configurations of large number of systems, installation of patches securely, verification of security-related configuration settings, compliance with security policies and regulatory requirements, and ability to respond quickly when new threats are discovered [1]. Although humans are important in information security management, humans sometimes introduce errors and inconsistencies in an organization due to manual nature of their tasks [2]. Security Content Automation Protocol was developed by the U.S. NIST to automate information security management tasks such as vulnerability and patch management, and to achieve continuous monitoring of security configurations in an organization. In this paper, SCAP is employed to develop an automated security configuration checklist for use in verifying Apple iOS device configuration against the defined security baseline to enforce policy compliance in an enterprise.
Adeyemi, I. R., Razak, S. A., Venter, H. S., Salleh, M..  2017.  High-Level Online User Attribution Model Based on Human Polychronic-Monochronic Tendency. 2017 IEEE International Conference on Big Data and Smart Computing (BigComp). :445–450.

User attribution process based on human inherent dynamics and preference is one area of research that is capable of elucidating and capturing human dynamics on the Internet. Prior works on user attribution concentrated on behavioral biometrics, 1-to-1 user identification process without consideration for individual preference and human inherent temporal tendencies, which is capable of providing a discriminatory baseline for online users, as well as providing a higher level classification framework for novel user attribution. To address these limitations, the study developed a temporal model, which comprises the human Polyphasia tendency based on Polychronic-Monochronic tendency scale measurement instrument and the extraction of unique human-centric features from server-side network traffic of 48 active users. Several machine-learning algorithms were applied to observe distinct pattern among the classes of the Polyphasia tendency, through which a logistic model tree was observed to provide higher classification accuracy for a 1-to-N user attribution process. The study further developed a high-level attribution model for higher-level user attribution process. The result from this study is relevant in online profiling process, forensic identification and profiling process, e-learning profiling process as well as in social network profiling process.

Adhatarao, S. S., Arumaithurai, M., Fu, X..  2017.  FOGG: A Fog Computing Based Gateway to Integrate Sensor Networks to Internet. 2017 29th International Teletraffic Congress (ITC 29). 2:42–47.
Internet of Things (IoT) is a growing topic of interest along with 5G. Billions of IoT devices are expected to connect to the Internet in the near future. These devices differ from the traditional devices operated in the Internet. We observe that Information Centric Networking (ICN), is a more suitable architecture for the IoT compared to the prevailing IP basednetwork. However, we observe that recent works that propose to use ICN for IoT, either do not cover the need to integrate Sensor Networks with the Internet to realize IoT or do so inefficiently. Fog computing is a promising technology that has many benefits to offer especially for IoT. In this work, we discover a need to integrate various heterogeneous Sensor Networks with the Internet to realize IoT and propose FOGG: A Fog Computing Based Gateway to Integrate Sensor Networks to Internet. FOGG uses a dedicated device to function as an IoT gateway. FOGG provides the needed integration along with additional services like name/protocol translation, security and controller functionalities.
Adhikari, M., Panda, P. K., Chattopadhyay, S., Majumdar, S..  2020.  A Novel Group-Based Authentication and Key Agreement Protocol for IoT Enabled LTE/LTE–A Network. 2020 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET). :168—172.

This paper deals with novel group-based Authentication and Key Agreement protocol for Internet of Things(IoT) enabled LTE/LTE-A network to overcome the problems of computational overhead, complexity and problem of heterogeneous devices, where other existing methods are lagging behind in attaining security requirements and computational overhead. In this work, two Groups are created among Machine Type Communication Devices (MTCDs) on the basis of device type to reduce complexity and problems of heterogeneous devices. This paper fulfills all the security requirements such as preservation, mutual authentication, confidentiality. Bio-metric authentication has been used to enhance security level of the network. The security and performance analysis have been verified through simulation results. Moreover, the performance of the proposed Novel Group-Based Authentication and key Agreement(AKA) Protocol is analyzed with other existing IoT enabled LTE/LTE-A protocol.

Adhikary, Manashee, Uppu, Ravitej, Hack, Sjoerd A., Harteveld, Cornelis A. M., Vos, Willem L..  2019.  Optical Resonances in a 3D Superlattice of Photonic Band Gap Cavities. 2019 Conference on Lasers and Electro-Optics Europe European Quantum Electronics Conference (CLEO/Europe-EQEC). :1–1.
The confinement of light in three dimensions (3D) is an active research topic in Nanophotonics, since it allows for ultimate control over photons [1]. A powerful tool to this end is a 3D photonic band gap crystal with a tailored defect that acts as a cavity or even a waveguide [2]. When a one-dimensional array of cavities is coupled, an intricate waveguiding system appears, known as a CROW (coupled resonator optical waveguide) [3]. Remarkably, 3D superlattices of coupled cavities that resonate inside a 3D band gap have not been studied to date. Recently, theoretical work has predicted the occurrence of "Cartesian light", wherein light propagates by hopping only in high symmetry directions in space [4]. This represents the optical analog of the Anderson model for spins or electrons that is relevant for neuromorphic computing and may lead to intricate lasing [5].
Adibi, S..  2014.  Comparative mobile platforms security solutions. Electrical and Computer Engineering (CCECE), 2014 IEEE 27th Canadian Conference on. :1-6.

Mobile platform security solution has become especially important for mobile computing paradigms, due to the fact that increasing amounts of private and sensitive information are being stored on the smartphones' on-device memory or MicroSD/SD cards. This paper aims to consider a comparative approach to the security aspects of the current smartphone systems, including: iOS, Android, BlackBerry (QNX), and Windows Phone.

Adil, M., Khan, R., Ghani, M. A. Nawaz Ul.  2020.  Preventive Techniques of Phishing Attacks in Networks. 2020 3rd International Conference on Advancements in Computational Sciences (ICACS). :1—8.

Internet is the most widely used technology in the current era of information technology and it is embedded in daily life activities. Due to its extensive use in everyday life, it has many applications such as social media (Face book, WhatsApp, messenger etc.,) and other online applications such as online businesses, e-counseling, advertisement on websites, e-banking, e-hunting websites, e-doctor appointment and e-doctor opinion. The above mentioned applications of internet technology makes things very easy and accessible for human being in limited time, however, this technology is vulnerable to various security threats. A vital and severe threat associated with this technology or a particular application is “Phishing attack” which is used by attacker to usurp the network security. Phishing attacks includes fake E-mails, fake websites, fake applications which are used to steal their credentials or usurp their security. In this paper, a detailed overview of various phishing attacks, specifically their background knowledge, and solutions proposed in literature to address these issues using various techniques such as anti-phishing, honey pots and firewalls etc. Moreover, installation of intrusion detection systems (IDS) and intrusion detection and prevention system (IPS) in the networks to allow the authentic traffic in an operational network. In this work, we have conducted end use awareness campaign to educate and train the employs in order to minimize the occurrence probability of these attacks. The result analysis observed for this survey was quite excellent by means of its effectiveness to address the aforementioned issues.

Adilbekov, Ulugbek, Adilova, Anar, Saginbekov, Sain.  2018.  Providing Location Privacy Using Fake Sources in Wireless Sensor Networks. 2018 IEEE 12th International Conference on Application of Information and Communication Technologies (AICT). :1–4.
Wireless Sensor Networks (WSNs) consist of low-cost, resource-constrained sensor nodes and a designated node called a sink which collects data from the sensor nodes. A WSN can be used in numerous applications such as subject tracking and monitoring, where it is often desirable to keep the location of the subject private. Without location privacy protection, an adversary can locate the subject. In this paper, we propose an algorithm that tries to keep the subject location private from a global adversary, which can see the entire network traffic, in an energy efficient way.
Adina, Prasesh, Venkatnarayan, Raghav H., Shahzad, Muhammad.  2018.  Impacts & Detection of Network Layer Attacks on IoT Networks. Proceedings of the 1st ACM MobiHoc Workshop on Mobile IoT Sensing, Security, and Privacy. :2:1–2:6.
With the advent of the Internet of Things (IoT), wireless sensor and actuator networks, subsequently referred to as IoT networks (IoTNs), are proliferating at an unprecedented rate in several newfound areas such as smart cities, health care, and transportation, and consequently, securing them is of paramount importance. In this paper, we present several useful insights from an exploratory study of the impacts of network layer attacks on IoTNs. We envision that these insights will guide the design of future frameworks to defend against network layer attacks. We also present a preliminary such framework and demonstrate its effectiveness in detecting network layer attacks through experiments on a real IoTN test-bed.
Adithyan, A., Nagendran, K., Chethana, R., Pandy D., Gokul, Prashanth K., Gowri.  2020.  Reverse Engineering and Backdooring Router Firmwares. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). :189–193.
Recently, there has been a dramatic increase in cyber attacks around the globe. Hundreds of 0day vulnerabilities on different platforms are discovered by security researchers worldwide. The attack vectors are becoming more and more difficult to be discovered by any anti threat detection engine. Inorder to bypass these smart detection mechanisms, attackers now started carrying out attacks at extremely low level where no threat inspection units are present. This makes the attack more stealthy with increased success rate and almost zero detection rate. A best case example for this scenario would be attacks like Meltdown and Spectre that targeted the modern processors to steal information by exploiting out-of-order execution feature in modern processors. These types of attacks are incredibly hard to detect and patch. Even if a patch is released, a wide range of normal audience are unaware of this both the vulnerability and the patch. This paper describes one such low level attacks that involves the process of reverse engineering firmwares and manually backdooring them with several linux utilities. Also, compromising a real world WiFi router with the manually backdoored firmware and attaining reverse shell from the router is discussed. The WiFi routers are almost everywhere especially in public places. Firmwares are responsible for controlling the routers. If the attacker manipulates the firmware and gains control over the firmware installed in the router, then the attacker can get a hold of the network and perform various MITM attacks inside the network with the help of the router.
Aditia, Mayank K., Altaf, Fahiem, Singh, Moirangthem R., Burra, Manohar S., Maurya, Chanchal, Sahoo, Sujit S., Maity, Soumyadev.  2019.  Optimized CL-PKE with Lightweight Encryption for Resource Constrained Devices. Proceedings of the 20th International Conference on Distributed Computing and Networking. :427–432.
Resource constrained devices such as sensors and RFIDs are utilized in many application areas to sense, store and transmit the sensitive data. This data must be encrypted to achieve confidentiality. The implementation of traditional public key encryption (PKE) techniques by these devices is always challenging as they possess very limited computational resources. Various encryption schemes based on identity-based encryption (IBE) and certificate-less public key encryption (CL-PKE) have been proposed to overcome limitations of PKI. However, many of these schemes involve the computationally expensive exponentiation and bilinear pairing operations on elliptic curve group to encrypt the messages. In this context, we propose a lightweight optimized CL-PKE scheme in which exponentiation and pairing operations are completely eliminated during encryption and only involves computation of cheaper addition and multiplication operations on elliptic curve. Implementation of the proposed scheme confirms its lightweight nature as compared to original CL-PKE scheme.
Aditya, Paarijaat, Sen, Rijurekha, Druschel, Peter, Joon Oh, Seong, Benenson, Rodrigo, Fritz, Mario, Schiele, Bernt, Bhattacharjee, Bobby, Wu, Tong Tong.  2016.  I-Pic: A Platform for Privacy-Compliant Image Capture. Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services. :235–248.

The ubiquity of portable mobile devices equipped with built-in cameras have led to a transformation in how and when digital images are captured, shared, and archived. Photographs and videos from social gatherings, public events, and even crime scenes are commonplace online. While the spontaneity afforded by these devices have led to new personal and creative outlets, privacy concerns of bystanders (and indeed, in some cases, unwilling subjects) have remained largely unaddressed. We present I-Pic, a trusted software platform that integrates digital capture with user-defined privacy. In I-Pic, users choose alevel of privacy (e.g., image capture allowed or not) based upon social context (e.g., out in public vs. with friends vs. at workplace). Privacy choices of nearby users are advertised via short-range radio, and I-Pic-compliant capture platforms generate edited media to conform to privacy choices of image subjects. I-Pic uses secure multiparty computation to ensure that users' visual features and privacy choices are not revealed publicly, regardless of whether they are the subjects of an image capture. Just as importantly, I-Pic preserves the ease-of-use and spontaneous nature of capture and sharing between trusted users. Our evaluation of I-Pic shows that a practical, energy-efficient system that conforms to the privacy choices of many users within a scene can be built and deployed using current hardware.

Adiyatullin, A. F., Anderson, M. D., Flayac, H., Portella-Oberli, M. T., Jabeen, F., Ouellet-Plamondon, C., Sallen, G. C., Deveaud, B..  2017.  Periodic squeezing in a polariton Josephson junction. 2017 Conference on Lasers and Electro-Optics Europe European Quantum Electronics Conference (CLEO/Europe-EQEC). :1–1.

Microcavity polaritons are a hybrid photonic system that arises from the strong coupling of confined photons to quantum-well excitons. Due to their light-matter nature, polaritons possess a Kerr-like nonlinearity while being easily accessible by standard optical means. The ability to engineer confinement potentials in microcavities makes polaritons a very convenient system to study spatially localized bosonic populations, which might have great potential for the creation of novel photonic devices. Careful engineering of this system is predicted to induce Gaussian squeezing, a phenomenon that lies at a heart of the so-called unconventional photon blockade associated with single photon emission. This paper reveals a manifestation of the predicted squeezing by measuring the ultrafast time-dependent second-order correlation function g(2)(0) by means of a streak-camera acting as a single photon detector. The light emitted by the microcavity oscillates between Poissonian and super-Poissonian in phase with the Josephson dynamics. This behavior is remarkably well explained by quantum simulations, which predict such dynamical evolution of the squeezing parameters. The paper shows that a crucial prerequisite for squeezing is presence of a weak, but non-zero nonlinearity. Results open the way towards generation of nonclassical light in solid-state systems possessing a single particle nonlinearity like microwave Josephson junctions or silicon-on-chip resonators.

Adjei, J.K..  2014.  Explaining the Role of Trust in Cloud Service Acquisition. Mobile Cloud Computing, Services, and Engineering (MobileCloud), 2014 2nd IEEE International Conference on. :283-288.

Effective digital identity management system is a critical enabler of cloud computing, since it supports the provision of the required assurances to the transacting parties. Such assurances sometimes require the disclosure of sensitive personal information. Given the prevalence of various forms of identity abuses on the Internet, a re-examination of the factors underlying cloud services acquisition has become critical and imperative. In order to provide better assurances, parties to cloud transactions must have confidence in service providers' ability and integrity in protecting their interest and personal information. Thus a trusted cloud identity ecosystem could promote such user confidence and assurances. Using a qualitative research approach, this paper explains the role of trust in cloud service acquisition by organizations. The paper focuses on the processes of acquisition of cloud services by financial institutions in Ghana. The study forms part of comprehensive study on the monetization of personal Identity information.

Adjei, J.K..  2014.  Explaining the Role of Trust in Cloud Service Acquisition. Mobile Cloud Computing, Services, and Engineering (MobileCloud), 2014 2nd IEEE International Conference on. :283-288.

Effective digital identity management system is a critical enabler of cloud computing, since it supports the provision of the required assurances to the transacting parties. Such assurances sometimes require the disclosure of sensitive personal information. Given the prevalence of various forms of identity abuses on the Internet, a re-examination of the factors underlying cloud services acquisition has become critical and imperative. In order to provide better assurances, parties to cloud transactions must have confidence in service providers' ability and integrity in protecting their interest and personal information. Thus a trusted cloud identity ecosystem could promote such user confidence and assurances. Using a qualitative research approach, this paper explains the role of trust in cloud service acquisition by organizations. The paper focuses on the processes of acquisition of cloud services by financial institutions in Ghana. The study forms part of comprehensive study on the monetization of personal Identity information.

Adnan, S. F. S., Isa, M. A. M., Hashim, H..  2017.  Analysis of asymmetric encryption scheme, AA \#x03B2; Performance on Arm Microcontroller. 2017 IEEE Symposium on Computer Applications Industrial Electronics (ISCAIE). :146–151.

Security protection is a concern for the Internet of Things (IoT) which performs data exchange autonomously over the internet for remote monitoring, automation and other applications. IoT implementations has raised concerns over its security and various research has been conducted to find an effective solution for this. Thus, this work focus on the analysis of an asymmetric encryption scheme, AA-Beta (AAβ) on a platform constrained in terms of processor capability, storage and random access Memory (RAM). For this work, the platform focused is ARM Cortex-M7 microcontroller. The encryption and decryption's performance on the embedded microcontroller is realized and time executed is measured. By enabled the I-Cache (Instruction cache) and D-Cache (Data Cache), the performances are 50% faster compared to disabled the D-Cache and I-Cache. The performance is then compared to our previous work on System on Chip (SoC). This is to analyze the gap of the SoC that has utilized the full GNU Multiple Precision Arithmetic Library (GMP) package versus ARM Cortex-M7 that using the mini-gmp package in term of the footprint and the actual performance.

Adomnicai, A., Fournier, J. J. A., Masson, L..  2018.  Hardware Security Threats Against Bluetooth Mesh Networks. 2018 IEEE Conference on Communications and Network Security (CNS). :1–9.
Because major smartphone platforms are equipped with Bluetooth Low Energy (BLE) capabilities, more and more smart devices have adopted BLE technologies to communicate with smartphones. In order to support the mesh topology in BLE networks, several proposals have been designed. Among them, the Bluetooth Special Interest Group (SIG) recently released a specification for Bluetooth mesh networks based upon BLE technology. This paper focuses on this standard solution and analyses its security protocol with hardware security in mind. As it is expected that internet of things (IoT) devices will be deployed everywhere, the risk of physical attacks must be assessed. First, we provide a comprehensive survey of the security features involved in Bluetooth mesh. Then, we introduce some physical attacks identified as serious threats for the IoT and discuss their relevance in the case of Bluetooth mesh networks. Finally, we briefly discuss possible countermeasures to reach a secure implementation.
Aduba, C., Won, C. h.  2015.  Resilient cumulant game control for cyber-physical systems. 2015 Resilience Week (RWS). :1–6.

In this paper, we investigate the resilient cumulant game control problem for a cyber-physical system. The cyberphysical system is modeled as a linear hybrid stochastic system with full-state feedback. We are interested in 2-player cumulant Nash game for a linear Markovian system with quadratic cost function where the players optimize their system performance by shaping the distribution of their cost function through cost cumulants. The controllers are optimally resilient against control feedback gain variations.We formulate and solve the coupled first and second cumulant Hamilton-Jacobi-Bellman (HJB) equations for the dynamic game. In addition, we derive the optimal players strategy for the second cost cumulant function. The efficiency of our proposed method is demonstrated by solving a numerical example.

Adwait Nadkarni, Benjamin Andow, William Enck, Somesh Jha.  2016.  Practical DIFC Enforcement on Android. USENIX Security Symposium.

Smartphone users often use private and enterprise data with untrusted third party applications.  The fundamental lack of secrecy guarantees in smartphone OSes, such as Android, exposes this data to the risk of unauthorized exfiltration.  A natural solution is the integration of secrecy guarantees into the OS.  In this paper, we describe the challenges for decentralized information flow control (DIFC) enforcement on Android.  We propose context-sensitive DIFC enforcement via lazy polyinstantiation and practical and secure network export through domain declassification.  Our DIFC system, Weir, is backwards compatible by design, and incurs less than 4 ms overhead for component startup.  With Weir,  we demonstrate practical and secure DIFC enforcement on Android.

Afanasev, M. Y., Krylova, A. A., Shorokhov, S. A., Fedosov, Y. V., Sidorenko, A. S..  2018.  A Design of Cyber-Physical Production System Prototype Based on an Ethereum Private Network. 2018 22nd Conference of Open Innovations Association (FRUCT). :3–11.

The concept of cyber-physical production systems is highly discussed amongst researchers and industry experts, however, the implementation options for these systems rely mainly on obsolete technologies. Despite the fact that the blockchain is most often associated with cryptocurrency, it is fundamentally wrong to deny the universality of this technology and the prospects for its application in other industries. For example, in the insurance sector or in a number of identity verification services. This article discusses the deployment of the CPPS backbone network based on the Ethereum private blockchain system. The structure of the network is described as well as its interaction with the help of smart contracts, based on the consumption of cryptocurrency for various operations.