Visible to the public Biblio

Found 1961 results

Filters: First Letter Of Last Name is A  [Clear All Filters]
2021-06-02
Applebaum, Benny, Kachlon, Eliran, Patra, Arpita.  2020.  The Round Complexity of Perfect MPC with Active Security and Optimal Resiliency. 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS). :1277—1284.
In STOC 1988, Ben-Or, Goldwasser, and Wigderson (BGW) established an important milestone in the fields of cryptography and distributed computing by showing that every functionality can be computed with perfect (information-theoretic and error-free) security at the presence of an active (aka Byzantine) rushing adversary that controls up to n/3 of the parties. We study the round complexity of general secure multiparty computation in the BGW model. Our main result shows that every functionality can be realized in only four rounds of interaction, and that some functionalities cannot be computed in three rounds. This completely settles the round-complexity of perfect actively-secure optimally-resilient MPC, resolving a long line of research. Our lower-bound is based on a novel round-reduction technique that allows us to lift existing three-round lower-bounds for verifiable secret sharing to four-round lower-bounds for general MPC. To prove the upper-bound, we develop new round-efficient protocols for computing degree-2 functionalities over large fields, and establish the completeness of such functionalities. The latter result extends the recent completeness theorem of Applebaum, Brakerski and Tsabary (TCC 2018, Eurocrypt 2019) that was limited to the binary field.
Anbumani, P., Dhanapal, R..  2020.  Review on Privacy Preservation Methods in Data Mining Based on Fuzzy Based Techniques. 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). :689—694.
The most significant motivation behind calculations in data mining will play out excavation on incomprehensible past examples since the extremely large data size. During late occasions there are numerous phenomenal improvements in data assembling because of the advancement in the field of data innovation. Lately, Privacy issues in data Preservation didn't get a lot of consideration in the process mining network; nonetheless, a few protection safeguarding procedures in data change strategies have been proposed in the data mining network. There are more normal distinction between data mining and cycle mining exist yet there are key contrasts that make protection safeguarding data mining methods inadmissible to mysterious cycle data. Results dependent on the data mining calculation can be utilized in different regions, for example, Showcasing, climate estimating and Picture Examination. It is likewise uncovered that some delicate data has a result of the mining calculation. Here we can safeguard the Privacy by utilizing PPT (Privacy Preservation Techniques) strategies. Important Concept in data mining is privacy preservation Techniques (PPT) because data exchanged between different persons needs security, so that other persons didn't know what actual data transferred between the actual persons. Preservation in data mining deals that not showing the output information / data in the data mining by using various methods while the output data is precious. There are two techniques used for privacy preservation techniques. One is to alter the input information / data and another one is to alter the output information / data. The method is proposed for protection safeguarding in data base environmental factors is data change. This capacity has fuzzy three-sided participation with this strategy for data change to change the first data collection.
Avula, Ramana R., Oechtering, Tobias J..  2020.  On Design of Optimal Smart Meter Privacy Control Strategy Against Adversarial Map Detection. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :5845—5849.
We study the optimal control problem of the maximum a posteriori (MAP) state sequence detection of an adversary using smart meter data. The privacy leakage is measured using the Bayesian risk and the privacy-enhancing control is achieved in real-time using an energy storage system. The control strategy is designed to minimize the expected performance of a non-causal adversary at each time instant. With a discrete-state Markov model, we study two detection problems: when the adversary is unaware or aware of the control. We show that the adversary in the former case can be controlled optimally. In the latter case, where the optimal control problem is shown to be non-convex, we propose an adaptive-grid approximation algorithm to obtain a sub-optimal strategy with reduced complexity. Although this work focuses on privacy in smart meters, it can be generalized to other sensor networks.
2021-06-01
Maswood, Mirza Mohd Shahriar, Uddin, Md Ashif, Dey, Uzzwal Kumar, Islam Mamun, Md Mainul, Akter, Moriom, Sonia, Shamima Sultana, Alharbi, Abdullah G..  2020.  A Novel Sensor Design to Sense Liquid Chemical Mixtures using Photonic Crystal Fiber to Achieve High Sensitivity and Low Confinement Losses. 2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0686—0691.
Chemical sensing is an important issue in food, water, environment, biomedical, and pharmaceutical field. Conventional methods used in laboratory for sensing the chemical are costly, time consuming, and sometimes wastes significant amount of sample. Photonic Crystal Fiber (PCF) offers high compactness and design flexibility and it can be used as biosensor, chemical sensor, liquid sensor, temperature sensor, mechanical sensor, gas sensor, and so on. In this work, we designed PCF to sense different concentrations of different liquids by one PCF structure. We designed different structure for silica cladding hexagonal PCF to sense different concentrations of benzene-toluene and ethanol-water mixer. Core diameter, air hole diameter, and air hole diameter to lattice pitch ratio are varied to get the optimal result as well to explore the effect of core size, air hole size and the pitch on liquid chemical sensing. Performance of the chemical sensors was examined based on confinement loss and sensitivity. The performance of the sensor varied a lot and basically it depends not only on refractive index of the liquid but also on sensing wavelengths. Our designed sensor can provide comparatively high sensitivity and low confinement loss.
Chandrasekaran, Selvamani, Ramachandran, K.I., Adarsh, S., Puranik, Ashish Kumar.  2020.  Avoidance of Replay attack in CAN protocol using Authenticated Encryption. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—6.
Controller Area Network is the prominent communication protocol in automotive systems. Its salient features of arbitration, message filtering, error detection, data consistency and fault confinement provide robust and reliable architecture. Despite of this, it lacks security features and is vulnerable to many attacks. One of the common attacks over the CAN communication is the replay attack. It can happen even after the implementation of encryption or authentication. This paper proposes a methodology of supressing the replay attacks by implementing authenticated encryption embedded with timestamp and pre-shared initialisation vector as a primary key. The major advantage of this system is its flexibility and configurability nature where in each layer can be chosen with the help of cryptographic algorithms to up to the entire size of the keys.
Lopes, Carmelo Riccardo, Zito, Pietro, Lampasi, Alessandro, Ala, Guido, Zizzo, Gaetano, Sanseverino, Eleonora Riva.  2020.  Conceptual Design and Modeling of Fast Discharge Unit for Quench Protection of Superconducting Toroidal Field Magnets of DTT. 2020 IEEE 20th Mediterranean Electrotechnical Conference ( MELECON). :623—628.
The paper deals with the modelling and simulation of a Fast Discharge Unit (FDU) for quench protection of the Toroidal Field (TF) magnets of the Divertor Tokamak Test, an experimental facility under design and construction in Frascati (Italy). The FDU is a safety key component that protects the superconducting magnets when a quench is detected through the fast extraction of the energy stored in superconducting magnets by adding in the TF magnets a dump (or discharge) resistor. In the paper, two different configurations of dump resistors (fixed and variable respectively) have been analysed and discussed. As a first result, it is possible to underline that the configuration with variable dump resistor is more efficient than the one with a fixed dump resistor.
Akand, Tawhida, Islam, Md Jahirul, Kaysir, Md Rejvi.  2020.  Low loss hollow core optical fibers combining lattice and negative curvature structures. 2020 IEEE Region 10 Symposium (TENSYMP). :698—701.
Negative curvature hollow core fibers (NC-HCFs) realize great research attention due to their comparatively low losses with simplified design and fabrication simplicity. Recently, revolver type fibers that combine the NC-HCF and conventional lattice structured photonic crystal fiber (PCF) have opened up a new era in communications due to their low loss, power confinement capacity, and multi-bandwidth applications. In this study, we present a customized optical fiber design that comprises the PCF with the NC-HCF to get lowest confinement loss. Extensive numerical simulations are performed and a noteworthy low loss of 4.47×10-05dB/m at a wavelength of 0.85 μm has been recorded for the designed fiber, which is almost 4600 times lower than annular revolver type fibers. In addition, a conspicuous low loss transmission bandwidth ranging from 0.6 μm to 1.8 μm has found in this study. This may have potential applications in spectroscopy, material processing, chemical and bio-molecular sensing, security, and industry applications.
Alfandi, Omar, Otoum, Safa, Jararweh, Yaser.  2020.  Blockchain Solution for IoT-based Critical Infrastructures: Byzantine Fault Tolerance. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—4.
Providing an acceptable level of security for Internet of Things (IoT)-based critical infrastructures, such as the connected vehicles, considers as an open research issue. Nowadays, blockchain overcomes a wide range of network limitations. In the context of IoT and blockchain, Byzantine Fault Tolerance (BFT)-based consensus protocol, that elects a set of authenticated devices/nodes within the network, considers as a solution for achieving the desired energy efficiency over the other consensus protocols. In BFT, the elected devices are responsible for ensuring the data blocks' integrity and preventing the concurrently appended blocks that might contain some malicious data. In this paper, we evaluate the fault-tolerance with different network settings, i.e., the number of connected vehicles. We verify and validate the proposed model with MATLAB/Simulink package simulations. The results show that our proposed hybrid scenario performed over the non-hybrid scenario taking throughput and latency in the consideration as the evaluated metrics.
Abhinav, P Y, Bhat, Avakash, Joseph, Christina Terese, Chandrasekaran, K.  2020.  Concurrency Analysis of Go and Java. 2020 5th International Conference on Computing, Communication and Security (ICCCS). :1—6.
There has been tremendous progress in the past few decades towards developing applications that receive data and send data concurrently. In such a day and age, there is a requirement for a language that can perform optimally in such environments. Currently, the two most popular languages in that respect are Go and Java. In this paper, we look to analyze the concurrency features of Go and Java through a complete programming language performance analysis, looking at their compile time, run time, binary sizes and the language's unique concurrency features. This is done by experimenting with the two languages using the matrix multiplication and PageRank algorithms. To the extent of our knowledge, this is the first work which used PageRank algorithm to analyse concurrency. Considering the results of this paper, application developers and researchers can hypothesize on an appropriate language to use for their concurrent programming activity.Results of this paper show that Go performs better for fewer number of computation but is soon taken over by Java as the number of computations drastically increase. This trend is shown to be the opposite when thread creation and management is considered where Java performs better with fewer computation but Go does better later on. Regarding concurrency features both Java with its Executor Service library and Go had their own advantages that made them better for specific applications.
Reijsbergen, Daniël, Anh Dinh, Tien Tuan.  2020.  On Exploiting Transaction Concurrency To Speed Up Blockchains. 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS). :1044—1054.
Consensus protocols are currently the bottlenecks that prevent blockchain systems from scaling. However, we argue that transaction execution is also important to the performance and security of blockchains. In other words, there are ample opportunities to speed up and further secure blockchains by reducing the cost of transaction execution. Our goal is to understand how much we can speed up blockchains by exploiting transaction concurrency available in blockchain workloads. To this end, we first analyze historical data of seven major public blockchains, namely Bitcoin, Bitcoin Cash, Litecoin, Dogecoin, Ethereum, Ethereum Classic, and Zilliqa. We consider two metrics for concurrency, namely the single-transaction conflict rate per block, and the group conflict rate per block. We find that there is more concurrency in UTXO-based blockchains than in account-based ones, although the amount of concurrency in the former is lower than expected. Another interesting finding is that some blockchains with larger blocks have more concurrency than blockchains with smaller blocks. Next, we propose an analytical model for estimating the transaction execution speed-up given an amount of concurrency. Using results from our empirical analysis, the model estimates that 6× speed-ups in Ethereum can be achieved if all available concurrency is exploited.
Averta, Giuseppe, Hogan, Neville.  2020.  Enhancing Robot-Environment Physical Interaction via Optimal Impedance Profiles. 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob). :973–980.
Physical interaction of robots with their environment is a challenging problem because of the exchanged forces. Hybrid position/force control schemes often exhibit problems during the contact phase, whereas impedance control appears to be more simple and reliable, especially when impedance is shaped to be energetically passive. Even if recent technologies enable shaping the impedance of a robot, how best to plan impedance parameters for task execution remains an open question. In this paper we present an optimization-based approach to plan not only the robot motion but also its desired end-effector mechanical impedance. We show how our methodology is able to take into account the transition from free motion to a contact condition, typical of physical interaction tasks. Results are presented for planar and three-dimensional open-chain manipulator arms. The compositionality of mechanical impedance is exploited to deal with kinematic redundancy and multi-arm manipulation.
2021-05-25
Nazemi, Mostafa, Dehghanian, Payman, Alhazmi, Mohannad, Wang, Fei.  2020.  Multivariate Uncertainty Characterization for Resilience Planning in Electric Power Systems. 2020 IEEE/IAS 56th Industrial and Commercial Power Systems Technical Conference (I CPS). :1—8.
Following substantial advancements in stochastic classes of decision-making optimization problems, scenario-based stochastic optimization, robust\textbackslashtextbackslash distributionally robust optimization, and chance-constrained optimization have recently gained an increasing attention. Despite the remarkable developments in probabilistic forecast of uncertainties (e.g., in renewable energies), most approaches are still being employed in a univariate framework which fails to unlock a full understanding on the underlying interdependence among uncertain variables of interest. In order to yield cost-optimal solutions with predefined probabilistic guarantees, conditional and dynamic interdependence in uncertainty forecasts should be accommodated in power systems decision-making. This becomes even more important during the emergencies where high-impact low-probability (HILP) disasters result in remarkable fluctuations in the uncertain variables. In order to model the interdependence correlation structure between different sources of uncertainty in power systems during both normal and emergency operating conditions, this paper aims to bridge the gap between the probabilistic forecasting methods and advanced optimization paradigms; in particular, perdition regions are generated in the form of ellipsoids with probabilistic guarantees. We employ a modified Khachiyan's algorithm to compute the minimum volume enclosing ellipsoids (MVEE). Application results based on two datasets on wind and photovoltaic power are used to verify the efficiency of the proposed framework.
Alabadi, Montdher, Albayrak, Zafer.  2020.  Q-Learning for Securing Cyber-Physical Systems : A survey. 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). :1–13.
A cyber-physical system (CPS) is a term that implements mainly three parts, Physical elements, communication networks, and control systems. Currently, CPS includes the Internet of Things (IoT), Internet of Vehicles (IoV), and many other systems. These systems face many security challenges and different types of attacks, such as Jamming, DDoS.CPS attacks tend to be much smarter and more dynamic; thus, it needs defending strategies that can handle this level of intelligence and dynamicity. Last few years, many researchers use machine learning as a base solution to many CPS security issues. This paper provides a survey of the recent works that utilized the Q-Learning algorithm in terms of security enabling and privacy-preserving. Different adoption of Q-Learning for security and defending strategies are studied. The state-of-the-art of Q-learning and CPS systems are classified and analyzed according to their attacks, domain, supported techniques, and details of the Q-Learning algorithm. Finally, this work highlight The future research trends toward efficient utilization of Q-learning and deep Q-learning on CPS security.
Ajorlou, Amir, Abbasfar, Aliazam.  2020.  An Optimized Structure of State Channel Network to Improve Scalability of Blockchain Algorithms. 2020 17th International ISC Conference on Information Security and Cryptology (ISCISC). :73—76.
Nowadays, blockchain is very common and widely used in various fields. The properties of blockchain-based algorithms such as being decentralized and uncontrolled by institutions and governments, are the main reasons that has attracted many applications. The security and the scalability limitations are the main challenges for the development of these systems. Using second layer network is one of the various methods proposed to improve the scalability of these systems. This network can increase the total number of transactions per second by creating extra channels between the nodes that operate in a different layer not obligated to be on consensus ledger. In this paper, the optimal structure for the second layer network has been presented. In the proposed structure we try to distribute the parameters of the second layer network as symmetrically as possible. To prove the optimality of this structure we first introduce the maximum scalability bound, and then calculate it for the proposed structure. This paper will show how the second layer method can improve the scalability without any information about the rate of transactions between nodes.
Satılmış, Hami, Akleylek, Sedat.  2020.  Efficient Implementation of HashSieve Algorithm for Lattice-Based Cryptography. 2020 International Conference on Information Security and Cryptology (ISCTURKEY). :75—79.
The security of lattice-based cryptosystems that are secure for the post-quantum period is based on the difficulty of the shortest vector problem (SVP) and the closest vector problem (CVP). In the literature, many sieving algorithms are proposed to solve these hard problems. In this paper, efficient implementation of HashSieve sieving algorithm is discussed. A modular software library to have an efficient implementation of HashSieve algorithm is developed. Modular software library is used as an infrastructure in order for the HashSieve efficient implementation to be better than the sample in the literature (Laarhoven's standard HashSieve implementation). According to the experimental results, it is observed that HashSieve efficient implementation has a better running time than the example in the literature. It is concluded that both implementations are close to each other in terms of the memory space used.
ÇELİK, Mahmut, ALKAN, Mustafa, ALKAN, Abdulkerim Oğuzhan.  2020.  Protection of Personal Data Transmitted via Web Service Against Software Developers. 2020 International Conference on Information Security and Cryptology (ISCTURKEY). :88—92.
Through the widespread use of information technologies, institutions have started to offer most of their services electronically. The best example of this is e-government. Since institutions provide their services to the electronic environment, the quality of the services they provide increases and their access to services becomes easier. Since personal information can be verified with inter-agency information sharing systems, wrong or unfair transactions can be prevented. Since information sharing between institutions is generally done through web services, protection of personal data transmitted via web services is of great importance. There are comprehensive national and international regulations on the protection of personal data. According to these regulations, protection of personal data shared between institutions is a legal obligation; protection of personal data is an issue that needs to be handled comprehensively. This study, protection of personal data shared between institutions through web services against software developers is discussed. With a proposed application, it is aimed to take a new security measure for the protection of personal data. The proposed application consists of a web interface prepared using React and Java programming languages and rest services that provide anonymization of personal data.
Anubi, Olugbenga Moses, Konstantinou, Charalambos, Wong, Carlos A., Vedula, Satish.  2020.  Multi-Model Resilient Observer under False Data Injection Attacks. 2020 IEEE Conference on Control Technology and Applications (CCTA). :1–8.

In this paper, we present the concept of boosting the resiliency of optimization-based observers for cyber-physical systems (CPS) using auxiliary sources of information. Due to the tight coupling of physics, communication and computation, a malicious agent can exploit multiple inherent vulnerabilities in order to inject stealthy signals into the measurement process. The problem setting considers the scenario in which an attacker strategically corrupts portions of the data in order to force wrong state estimates which could have catastrophic consequences. The goal of the proposed observer is to compute the true states in-spite of the adversarial corruption. In the formulation, we use a measurement prior distribution generated by the auxiliary model to refine the feasible region of a traditional compressive sensing-based regression problem. A constrained optimization-based observer is developed using l1-minimization scheme. Numerical experiments show that the solution of the resulting problem recovers the true states of the system. The developed algorithm is evaluated through a numerical simulation example of the IEEE 14-bus system.

Ahmedova, Oydin, Mardiyev, Ulugbek, Tursunov, Otabek.  2020.  Generation and Distribution Secret Encryption Keys with Parameter. 2020 International Conference on Information Science and Communications Technologies (ICISCT). :1—4.
This article describes a new way to generate and distribute secret encryption keys, in which the processes of generating a public key and formicating a secret encryption key are performed in algebra with a parameter, the secrecy of which provides increased durability of the key.
AKCENGİZ, Ziya, Aslan, Melis, Karabayır, Özgür, Doğanaksoy, Ali, Uğuz, Muhiddin, Sulak, Fatih.  2020.  Statistical Randomness Tests of Long Sequences by Dynamic Partitioning. 2020 International Conference on Information Security and Cryptology (ISCTURKEY). :68—74.
Random numbers have a wide usage in the area of cryptography. In practice, pseudo random number generators are used in place of true random number generators, as regeneration of them may be required. Therefore because of generation methods of pseudo random number sequences, statistical randomness tests have a vital importance. In this paper, a randomness test suite is specified for long binary sequences. In literature, there are many randomness tests and test suites. However, in most of them, to apply randomness test, long sequences are partitioned into a certain fixed length and the collection of short sequences obtained is evaluated instead. In this paper, instead of partitioning a long sequence into fixed length subsequences, a concept of dynamic partitioning is introduced in accordance with the random variable in consideration. Then statistical methods are applied. The suggested suite, containing four statistical tests: Collision Tests, Weight Test, Linear Complexity Test and Index Coincidence Test, all of them work with the idea of dynamic partitioning. Besides the adaptation of this approach to randomness tests, the index coincidence test is another contribution of this work. The distribution function and the application of all tests are given in the paper.
Laato, Samuli, Farooq, Ali, Tenhunen, Henri, Pitkamaki, Tinja, Hakkala, Antti, Airola, Antti.  2020.  AI in Cybersecurity Education- A Systematic Literature Review of Studies on Cybersecurity MOOCs. 2020 IEEE 20th International Conference on Advanced Learning Technologies (ICALT). :6—10.

Machine learning (ML) techniques are changing both the offensive and defensive aspects of cybersecurity. The implications are especially strong for privacy, as ML approaches provide unprecedented opportunities to make use of collected data. Thus, education on cybersecurity and AI is needed. To investigate how AI and cybersecurity should be taught together, we look at previous studies on cybersecurity MOOCs by conducting a systematic literature review. The initial search resulted in 72 items and after screening for only peer-reviewed publications on cybersecurity online courses, 15 studies remained. Three of the studies concerned multiple cybersecurity MOOCs whereas 12 focused on individual courses. The number of published work evaluating specific cybersecurity MOOCs was found to be small compared to all available cybersecurity MOOCs. Analysis of the studies revealed that cybersecurity education is, in almost all cases, organised based on the topic instead of used tools, making it difficult for learners to find focused information on AI applications in cybersecurity. Furthermore, there is a gab in academic literature on how AI applications in cybersecurity should be taught in online courses.

Addae, Joyce, Radenkovic, Milena, Sun, Xu, Towey, Dave.  2016.  An extended perspective on cybersecurity education. 2016 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE). :367—369.
The current trend of ubiquitous device use whereby computing is becoming increasingly context-aware and personal, has created a growing concern for the protection of personal privacy. Privacy is an essential component of security, and there is a need to be able to secure personal computers and networks to minimize privacy depreciation within cyberspace. Human error has been recognized as playing a major role in security breaches: Hence technological solutions alone cannot adequately address the emerging security and privacy threats. Home users are particularly vulnerable to cybersecurity threats for a number of reasons, including a particularly important one that our research seeks to address: The lack of cybersecurity education. We argue that research seeking to address the human element of cybersecurity should not be limited only to the design of more usable technical security mechanisms, but should be extended and applied to offering appropriate training to all stakeholders within cyberspace.
Alnsour, Rawan, Hamdan, Basil.  2020.  Incorporating SCADA Cybersecurity in Undergraduate Engineering Technology Information Technology Education. 2020 Intermountain Engineering, Technology and Computing (IETC). :1—4.

The purpose of this paper is threefold. First, it makes the case for incorporating cybersecurity principles into undergraduate Engineering Technology Education and for incorporating Industrial Control Systems (ICS) principles into undergraduate Information Technology (IT)/Cybersecurity Education. Specifically, the paper highlights the knowledge/skill gap between engineers and IT/Cybersecurity professionals with respect to the cybersecurity of the ICS. Secondly, it identifies several areas where traditional IT systems and ICS intercept. This interception not only implies that ICS are susceptible to the same cyber threats as traditional IT/IS but also to threats that are unique to ICS. Subsequently, the paper identifies several areas where cybersecurity principles can be applied to ICS. By incorporating cybersecurity principles into Engineering Technology Education, the paper hopes to provide IT/Cybersecurity and Engineering Students with (a) the theoretical knowledge of the cybersecurity issues associated with administering and operating ICS and (b) the applied technical skills necessary to manage and mitigate the cyber risks against these systems. Overall, the paper holds the promise of contributing to the ongoing effort aimed at bridging the knowledge/skill gap with respect to securing ICS against cyber threats and attacks.

Abbas, Syed Ghazanfar, Hashmat, Fabiha, Shah, Ghalib A..  2020.  A Multi-layer Industrial-IoT Attack Taxonomy: Layers, Dimensions, Techniques and Application. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1820—1825.

Industrial IoT (IIoT) is a specialized subset of IoT which involves the interconnection of industrial devices with ubiquitous control and intelligent processing services to improve industrial system's productivity and operational capability. In essence, IIoT adapts a use-case specific architecture based on RFID sense network, BLE sense network or WSN, where heterogeneous industrial IoT devices can collaborate with each other to achieve a common goal. Nonetheless, most of the IIoT deployments are brownfield in nature which involves both new and legacy technologies (SCADA (Supervisory Control and Data Acquisition System)). The merger of these technologies causes high degree of cross-linking and decentralization which ultimately increases the complexity of IIoT systems and introduce new vulnerabilities. Hence, industrial organizations becomes not only vulnerable to conventional SCADA attacks but also to a multitude of IIoT specific threats. However, there is a lack of understanding of these attacks both with respect to the literature and empirical evaluation. As a consequence, it is infeasible for industrial organizations, researchers and developers to analyze attacks and derive a robust security mechanism for IIoT. In this paper, we developed a multi-layer taxonomy of IIoT attacks by considering both brownfield and greenfield architecture of IIoT. The taxonomy consists of 11 layers 94 dimensions and approximately 100 attack techniques which helps to provide a holistic overview of the incident attack pattern, attack characteristics and impact on industrial system. Subsequently, we have exhibited the practical relevance of developed taxonomy by applying it to a real-world use-case. This research will benefit researchers and developers to best utilize developed taxonomy for analyzing attack sequence and to envisage an efficient security platform for futuristic IIoT applications.

2021-05-20
Antonio, Elbren, Fajardo, Arnel, Medina, Ruji.  2020.  Tracking Browser Fingerprint using Rule Based Algorithm. 2020 16th IEEE International Colloquium on Signal Processing Its Applications (CSPA). :225—229.

Browsers collects information for better user experience by allowing JavaScript's and other extensions. Advertiser and other trackers take advantage on this useful information to tracked users across the web from remote devices on the purpose of individual unique identifications the so-called browser fingerprinting. Our work explores the diversity and stability of browser fingerprint by modifying the rule-based algorithm. Browser fingerprint rely only from the gathered data through browser, it is hard to tell that this piece of information still the same when upgrades and or downgrades are happening to any browsers and software's without user consent, which is stability and diversity are the most important usage of generating browser fingerprint. We implemented device fingerprint to identify consenting visitors in our website and evaluate individual devices attributes by calculating entropy of each selected attributes. In this research, it is noted that we emphasize only on data collected through a web browser by employing twenty (20) attributes to identify promising high value information to track how device information evolve and consistent in a period of time, likewise, we manually selected device information for evaluation where we apply the modified rules. Finally, this research is conducted and focused on the devices having the closest configuration and device information to test how devices differ from each other after several days of using on the basis of individual user configurations, this will prove in our study that every device is unique.

Al-madani, Ali Mansour, Gaikwad, Ashok T., Mahale, Vivek, Ahmed, Zeyad A.T..  2020.  Decentralized E-voting system based on Smart Contract by using Blockchain Technology. 2020 International Conference on Smart Innovations in Design, Environment, Management, Planning and Computing (ICSIDEMPC). :176—180.

Nowadays the use of the Internet is growing; E-voting system has been used by different countries because it reduces the cost and the time which used to consumed by using traditional voting. When the voter wants to access the E-voting system through the web application, there are requirements such as a web browser and a server. The voter uses the web browser to reach to a centralized database. The use of a centralized database for the voting system has some security issues such as Data modification through the third party in the network due to the use of the central database system as well as the result of the voting is not shown in real-time. However, this paper aims to provide an E-voting system with high security by using blockchain. Blockchain provides a decentralized model that makes the network Reliable, safe, flexible, and able to support real-time services.