Visible to the public Biblio

Found 377 results

Filters: First Letter Of Last Name is G  [Clear All Filters]
A B C D E F [G] H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
G
G. DAngelo, S. Rampone, F. Palmieri.  2015.  "An Artificial Intelligence-Based Trust Model for Pervasive Computing". 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC). :701-706.

Pervasive Computing is one of the latest and more advanced paradigms currently available in the computers arena. Its ability to provide the distribution of computational services within environments where people live, work or socialize leads to make issues such as privacy, trust and identity more challenging compared to traditional computing environments. In this work we review these general issues and propose a Pervasive Computing architecture based on a simple but effective trust model that is better able to cope with them. The proposed architecture combines some Artificial Intelligence techniques to achieve close resemblance with human-like decision making. Accordingly, Apriori algorithm is first used in order to extract the behavioral patterns adopted from the users during their network interactions. Naïve Bayes classifier is then used for final decision making expressed in term of probability of user trustworthiness. To validate our approach we applied it to some typical ubiquitous computing scenarios. The obtained results demonstrated the usefulness of such approach and the competitiveness against other existing ones.

G. G. Granadillo, J. Garcia-Alfaro, H. Debar, C. Ponchel, L. R. Martin.  2015.  "Considering technical and financial impact in the selection of security countermeasures against Advanced Persistent Threats (APTs)". 2015 7th International Conference on New Technologies, Mobility and Security (NTMS). :1-6.

This paper presents a model to evaluate and select security countermeasures from a pool of candidates. The model performs industrial evaluation and simulations of the financial and technical impact associated to security countermeasures. The financial impact approach uses the Return On Response Investment (RORI) index to compare the expected impact of the attack when no response is enacted against the impact after applying security countermeasures. The technical impact approach evaluates the protection level against a threat, in terms of confidentiality, integrity, and availability. We provide a use case on malware attacks that shows the applicability of our model in selecting the best countermeasure against an Advanced Persistent Threat.

G. Kejela, C. Rong.  2015.  "Cross-Device Consumer Identification". 2015 IEEE International Conference on Data Mining Workshop (ICDMW). :1687-1689.

Nowadays, a typical household owns multiple digital devices that can be connected to the Internet. Advertising companies always want to seamlessly reach consumers behind devices instead of the device itself. However, the identity of consumers becomes fragmented as they switch from one device to another. A naive attempt is to use deterministic features such as user name, telephone number and email address. However consumers might refrain from giving away their personal information because of privacy and security reasons. The challenge in ICDM2015 contest is to develop an accurate probabilistic model for predicting cross-device consumer identity without using the deterministic user information. In this paper we present an accurate and scalable cross-device solution using an ensemble of Gradient Boosting Decision Trees (GBDT) and Random Forest. Our final solution ranks 9th both on the public and private LB with F0.5 score of 0.855.

Gadde, Phani Harsha, Brahma, Sukumar.  2019.  Realistic Microgrid Test Bed for Protection and Resiliency Studies. 2019 North American Power Symposium (NAPS). :1–6.

Momentum towards realization of smart grid will continue to result in high penetration of renewable fed Distributed Energy Resources (DERs) in the Electric Power System (EPS). The drive towards resiliency will enable a modular topology where several microgrids are tied to-gather, operating synchronously to form the future EPS. These microgrids may very well evolve to be fed by 100% Inverter Based Resources (IBRs), and required to operate reliably in both grid-connected and islanded modes. Since microgrids will evolve from existing distribution feeders, they will be unbalanced in terms of load, phases, and feeder-impedances. Protection and control of such microgrids, spanning over grid-connected mode, islanded mode, and transition mode need urgent attention. This paper focuses on the control aspect to facilitate stable operation and power sharing under these modes. A detailed EMTP model of a testbed using the IEEE 13-bus system is created in PSCAD, involving multiple inverters. Control strategy, modes, and implementation of inverter controls are described, and results showing stable operation and power sharing in all modes are presented.

Gaebel, Ethan, Zhang, Ning, Lou, Wenjing, Hou, Y. Thomas.  2016.  Looks Good To Me: Authentication for Augmented Reality. Proceedings of the 6th International Workshop on Trustworthy Embedded Devices. :57–67.

Augmented reality is poised to become a dominant computing paradigm over the next decade. With promises of three-dimensional graphics and interactive interfaces, augmented reality experiences will rival the very best science fiction novels. This breakthrough also brings in unique challenges on how users can authenticate one another to share rich content between augmented reality headsets. Traditional authentication protocols fall short when there is no common central entity or when access to the central authentication server is not available or desirable. Looks Good To Me (LGTM) is an authentication protocol that leverages the unique hardware and context provided with augmented reality headsets to bring innate human trust mechanisms into the digital world to solve authentication in a usable and secure way. LGTM works over point to point wireless communication so users can authenticate one another in a variety of circumstances and is designed with usability at its core, requiring users to perform only two actions: one to initiate and one to confirm. Users intuitively authenticate one another, using seemingly only each other's faces, but under the hood LGTM uses a combination of facial recognition and wireless localization to bootstrap trust from a wireless signal, to a location, to a face, for secure and usable authentication.

Gafencu, L. P., Scripcariu, L., Bogdan, I..  2017.  An overview of security aspects and solutions in VANETs. 2017 International Symposium on Signals, Circuits and Systems (ISSCS). :1–4.

Because of the nature of vehicular communications, security is a crucial aspect, involving the continuous development and analysis of the existing security architectures and punctual theoretical and practical aspects that have been proposed and are in need of continuous updates and integrations with newer technologies. But before an update, a good knowledge of the current aspects is mandatory. Identifying weaknesses and anticipating possible risks of vehicular communication networks through a failure modes and effects analysis (FMEA) represent an important aspect of the security analysis process and a valuable step in finding efficient security solutions for all kind of problems that might occur in these systems.

Gaff, Brian M., Sussman, Heather Egan, Geetter, Jennifer.  2014.  Privacy and Big Data. Computer. 47:7-9.

Big data's explosive growth has prompted the US government to release new reports that address the issues--particularly related to privacy--resulting from this growth. The Web extra at http://youtu.be/j49eoe5g8-c is an audio recording from the Computing and the Law column, in which authors Brian M. Gaff, Heather Egan Sussman, and Jennifer Geetter discuss how big data's explosive growth has prompted the US government to release new reports that address the issues--particularly related to privacy--resulting from this growth.
 

Gafurov, Davrondzhon, Hurum, Arne Erik, Markman, Martin.  2018.  Achieving Test Automation with Testers Without Coding Skills: An Industrial Report. Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. :749–756.
We present a process driven test automation solution which enables delegating (part of) automation tasks from test automation engineer (expensive resource) to test analyst (non-developer, less expensive). In our approach, a test automation engineer implements test steps (or actions) which are executed automatically. Such automated test steps represent user actions in the system under test and specified by a natural language which is understandable by a non-technical person. Then, a test analyst with a domain knowledge organizes automated steps combined with test input to create an automated test case. It should be emphasized that the test analyst does not need to possess programming skills to create, modify or execute automated test cases. We refine benchmark test automation architecture to be better suitable for an effective separation and sharing of responsibilities between the test automation engineer (with coding skills) and test analyst (with a domain knowledge). In addition, we propose a metric to empirically estimate cooperation between test automation engineer and test analyst's works. The proposed automation solution has been defined based on our experience in the development and maintenance of Helsenorg, the national electronic health services in Norway which has had over one million of visits per month past year, and we still use it to automate the execution of regression tests.
Gagliano, Allison, Krawec, Walter O., Iqbal, Hasan.  2019.  From Classical to Semi-Quantum Secure Communication. 2019 IEEE International Symposium on Information Theory (ISIT). :1707—1711.

In this work we introduce a novel QKD protocol capable of smoothly transitioning, via a user-tuneable parameter, from classical to semi-quantum in order to help understand the effect of quantum communication resources on secure key distribution. We perform an information theoretic security analysis of this protocol to determine what level of "quantumness" is sufficient to achieve security, and we discover some rather interesting properties of this protocol along the way.

Gai, K., Qiu, M..  2017.  An Optimal Fully Homomorphic Encryption Scheme. 2017 ieee 3rd international conference on big data security on cloud (bigdatasecurity), ieee international conference on high performance and smart computing (hpsc), and ieee international conference on intelligent data and security (ids). :101–106.

The expeditious expansion of the networking technologies have remarkably driven the usage of the distributedcomputing as well as services, such as task offloading to the cloud. However, security and privacy concerns are restricting the implementations of cloud computing because of the threats from both outsiders and insiders. The primary alternative of protecting users' data is developing a Fully Homomorphic Encryption (FHE) scheme, which can cover both data protections and data processing in the cloud. Despite many previous attempts addressing this approach, none of the proposed work can simultaneously satisfy two requirements that include the non-noise accuracy and an efficiency execution. This paper focuses on the issue of FHE design and proposes a novel FHE scheme, which is called Optimal Fully Homomorphic Encryption (O-FHE). Our approach utilizes the properties of the Kronecker Product (KP) and designs a mechanism of achieving FHE, which consider both accuracy and efficiency. We have assessed our scheme in both theoretical proofing and experimental evaluations with the confirmed and exceptional results.

Gaikwad, V. S., Gandle, K. S..  2017.  Ideal complexity cryptosystem with high privacy data service for cloud databases. 2017 1st International Conference on Intelligent Systems and Information Management (ICISIM). :267–270.

Data storage in cloud should come along with high safety and confidentiality. It is accountability of cloud service provider to guarantee the availability and security of client data. There exist various alternatives for storage services but confidentiality and complexity solutions for database as a service are still not satisfactory. Proposed system gives alternative solution for database as a service that integrates benefits of different services along with advance encryption techniques. It yields possibility of applying concurrency on encrypted data. This alternative provides supporting facility to connect dispersed clients with elimination of intermediate proxy by which simplicity can acquired. Performance of proposed system evaluated on basis of theoretical analyses.

Gajavelly, Raj Kumar, Baumgartner, Jason, Ivrii, Alexander, Kanzelman, Robert L., Ghosh, Shiladitya.  2019.  Input Elimination Transformations for Scalable Verification and Trace Reconstruction. 2019 Formal Methods in Computer Aided Design (FMCAD). :10–18.
We present two novel sound and complete netlist transformations, which substantially improve verification scalability while enabling very efficient trace reconstruction. First, we present a 2QBF variant of input reparameterization, capable of eliminating inputs without introducing new logic and without complete range computation. While weaker in reduction potential, it yields up to 4 orders of magnitude speedup to trace reconstruction when used as a fast-and-lossy preprocess to traditional reparameterization. Second, we present a novel scalable approach to leverage sequential unateness to merge selective inputs, in cases greatly reducing netlist size and verification complexity. Extensive benchmarking demonstrates the utility of these techniques. Connectivity verification particularly benefits from these reductions, up to 99.8%.
Gajjar, V., Khandhediya, Y., Gurnani, A..  2017.  Human Detection and Tracking for Video Surveillance: A Cognitive Science Approach. 2017 IEEE International Conference on Computer Vision Workshops (ICCVW). :2805–2809.

With crimes on the rise all around the world, video surveillance is becoming more important day by day. Due to the lack of human resources to monitor this increasing number of cameras manually, new computer vision algorithms to perform lower and higher level tasks are being developed. We have developed a new method incorporating the most acclaimed Histograms of Oriented Gradients, the theory of Visual Saliency and the saliency prediction model Deep Multi-Level Network to detect human beings in video sequences. Furthermore, we implemented the k - Means algorithm to cluster the HOG feature vectors of the positively detected windows and determined the path followed by a person in the video. We achieved a detection precision of 83.11% and a recall of 41.27%. We obtained these results 76.866 times faster than classification on normal images.

Gallagher, Kevin, Patil, Sameer, Dolan-Gavitt, Brendan, McCoy, Damon, Memon, Nasir.  2018.  Peeling the Onion's User Experience Layer: Examining Naturalistic Use of the Tor Browser. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :1290–1305.

The strength of an anonymity system depends on the number of users. Therefore, User eXperience (UX) and usability of these systems is of critical importance for boosting adoption and use. To this end, we carried out a study with 19 non-expert participants to investigate how users experience routine Web browsing via the Tor Browser, focusing particularly on encountered problems and frustrations. Using a mixed-methods quantitative and qualitative approach to study one week of naturalistic use of the Tor Browser, we uncovered a variety of UX issues, such as broken Web sites, latency, lack of common browsing conveniences, differential treatment of Tor traffic, incorrect geolocation, operational opacity, etc. We applied this insight to suggest a number of UX improvements that could mitigate the issues and reduce user frustration when using the Tor Browser.

Gamachchi, A., Boztas, S..  2017.  Insider Threat Detection Through Attributed Graph Clustering. 2017 IEEE Trustcom/BigDataSE/ICESS. :112–119.

While most organizations continue to invest in traditional network defences, a formidable security challenge has been brewing within their own boundaries. Malicious insiders with privileged access in the guise of a trusted source have carried out many attacks causing far reaching damage to financial stability, national security and brand reputation for both public and private sector organizations. Growing exposure and impact of the whistleblower community and concerns about job security with changing organizational dynamics has further aggravated this situation. The unpredictability of malicious attackers, as well as the complexity of malicious actions, necessitates the careful analysis of network, system and user parameters correlated with insider threat problem. Thus it creates a high dimensional, heterogeneous data analysis problem in isolating suspicious users. This research work proposes an insider threat detection framework, which utilizes the attributed graph clustering techniques and outlier ranking mechanism for enterprise users. Empirical results also confirm the effectiveness of the method by achieving the best area under curve value of 0.7648 for the receiver operating characteristic curve.

Gambino, Andrew, Kim, Jinyoung, Sundar, S. Shyam, Ge, Jun, Rosson, Mary Beth.  2016.  User Disbelief in Privacy Paradox: Heuristics That Determine Disclosure. Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems. :2837–2843.
We conducted a series of in-depth focus groups wherein users provided rationales for their own online privacy behaviors. Our data suggest that individuals often take action with little thought or evaluation, even showing surprise when confronted with their own behaviors. Our analysis yielded a battery of cognitive heuristics, i.e., mental shortcuts / rules of thumb, that users seem to employ when they disclose or withhold information at the spur of the moment. A total of 4 positive heuristics (promoting disclosure) and 4 negative heuristics (inhibiting disclosure) were discovered. An understanding of these heuristics can be valuable for designing interfaces that promote secure and trustworthy computing.
Gan, Jiarui, An, Bo, Vorobeychik, Yevgeniy.  2015.  Security Games with Protection Externalities. Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. :914–920.

Stackelberg security games have been widely deployed in recent years to schedule security resources. An assumption in most existing security game models is that one security resource assigned to a target only protects that target. However, in many important real-world security scenarios, when a resource is assigned to a target, it exhibits protection externalities: that is, it also protects other "neighbouring" targets. We investigate such Security Games with Protection Externalities (SPEs). First, we demonstrate that computing a strong Stackelberg equilibrium for an SPE is NP-hard, in contrast with traditional Stackelberg security games which can be solved in polynomial time. On the positive side, we propose a novel column generation based approach—CLASPE—to solve SPEs. CLASPE features the following novelties: 1) a novel mixed-integer linear programming formulation for the slave problem; 2) an extended greedy approach with a constant-factor approximation ratio to speed up the slave problem; and 3) a linear-scale linear programming that efficiently calculates the upper bounds of target-defined subproblems for pruning. Our experimental evaluation demonstrates that CLASPE enable us to scale to realistic-sized SPE problem instances.

Gandino, F., Montrucchio, B., Rebaudengo, M..  2014.  Key Management for Static Wireless Sensor Networks With Node Adding. Industrial Informatics, IEEE Transactions on. 10:1133-1143.

Wireless sensor networks offer benefits in several applications but are vulnerable to various security threats, such as eavesdropping and hardware tampering. In order to reach secure communications among nodes, many approaches employ symmetric encryption. Several key management schemes have been proposed in order to establish symmetric keys. The paper presents an innovative key management scheme called random seed distribution with transitory master key, which adopts the random distribution of secret material and a transitory master key used to generate pairwise keys. The proposed approach addresses the main drawbacks of the previous approaches based on these techniques. Moreover, it overperforms the state-of-the-art protocols by providing always a high security level.

Gang Han, Haibo Zeng, Yaping Li, Wenhua Dou.  2014.  SAFE: Security-Aware FlexRay Scheduling Engine. Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014. :1-4.

In this paper, we propose SAFE (Security Aware FlexRay scheduling Engine), to provide a problem definition and a design framework for FlexRay static segment schedule to address the new challenge on security. From a high level specification of the application, the architecture and communication middleware are synthesized to satisfy security requirements, in addition to extensibility, costs, and end-to-end latencies. The proposed design process is applied to two industrial case studies consisting of a set of active safety functions and an X-by-wire system respectively.

Gangadhar, S., Sterbenz, J. P. G..  2017.  Machine learning aided traffic tolerance to improve resilience for software defined networks. 2017 9th International Workshop on Resilient Networks Design and Modeling (RNDM). :1–7.

Software Defined Networks (SDNs) have gained prominence recently due to their flexible management and superior configuration functionality of the underlying network. SDNs, with OpenFlow as their primary implementation, allow for the use of a centralised controller to drive the decision making for all the supported devices in the network and manage traffic through routing table changes for incoming flows. In conventional networks, machine learning has been shown to detect malicious intrusion, and classify attacks such as DoS, user to root, and probe attacks. In this work, we extend the use of machine learning to improve traffic tolerance for SDNs. To achieve this, we extend the functionality of the controller to include a resilience framework, ReSDN, that incorporates machine learning to be able to distinguish DoS attacks, focussing on a neptune attack for our experiments. Our model is trained using the MIT KDD 1999 dataset. The system is developed as a module on top of the POX controller platform and evaluated using the Mininet simulator.

Ganguly, Pallab, Nasipuri, Mita, Dutta, Sourav.  2019.  Challenges of the Existing Security Measures Deployed in the Smart Grid Framework. 2019 IEEE 7th International Conference on Smart Energy Grid Engineering (SEGE). :1–5.
Due to the rise of huge population in mankind and the large variety of upcoming utilization of power, the energy requirement has substantially increased. Smart Grid is a very important part of the Smart Cities initiative and is one of the crucial components in distribution and reconciliation of energy. Security of the smart grid infrastructure, which is an integral part of the smart grid framework, intended at transitioning the conventional power grid system into a robust, reliable, adaptable and intelligent energy utility, is an impending problem that needs to be arrested quickly. With the increasingly intensifying integration of smart devices in the smart grid infrastructure with other interconnected applications and the communication backbone is compelling both the energy users and the energy utilities to thoroughly look into the privacy and security issues of the smart grid. In this paper, we present challenges of the existing security mechanisms deployed in the smart grid framework and we tried to bring forward the unresolved problems that would highlight the security aspects of Smart Grid as a challenging area of research and development in the future.
Gao, Boyo, Shi, Libao, Ni, Yixin.  2019.  A dynamic defense-attack game scheme with incomplete information for vulnerability analysis in a cyber-physical power infrastructure. 8th Renewable Power Generation Conference (RPG 2019). :1—8.
The modern power system is experiencing rapid development towards a smarter cyber-physical power grid. How to comprehensively and effectively identify the vulnerable components under various cyber attacks has attracted widespread interest and attention around the world. In this paper, a game-theoretical scheme is developed to analyze the vulnerabilities of transmission lines and cyber elements under locally coordinated cyber-physical attacks in a cyber-physical power infrastructure. A two-step scenario including resources allocation made by system defender in advance and subsequent coordinated cyber-physical attacks are designed elaborately. The designed scenario is modeled as a game of incomplete information, which is then converted into a bi-level mathematical programming problem. In the lower level model, the attacker aims at maximizing system losses by attacking some transmission lines. While in the higher level model, the defender allocates defensive resources, trying to maximally reduce the losses considering the possible attacks. The payoffs of the game are calculated by leveraging a strategy of searching accident chains caused by cascading failure analyzed in this paper. A particle swarm optimization algorithm is applied to solve the proposed nonlinear bi-level programming model, and the case studies on a 34-bus system are conducted to verify the effectiveness of the proposed scheme.
Gao, F..  2017.  Application of Generalized Regression Neural Network in Cloud Security Intrusion Detection. 2017 International Conference on Robots Intelligent System (ICRIS). :54–57.

By using generalized regression neural network clustering analysis, effective clustering of five kinds of network intrusion behavior modes is carried out. First of all, intrusion data is divided into five categories by making use of fuzzy C means clustering algorithm. Then, the samples that are closet to the center of each class in the clustering results are taken as the clustering training samples of generalized neural network for the data training, and the results output by the training are the individual owned invasion category. The experimental results showed that the new algorithm has higher classification accuracy of network intrusion ways, which can provide more reliable data support for the prevention of the network intrusion.

Gao, Fengjuan, Chen, Tianjiao, Wang, Yu, Situ, Lingyun, Wang, Linzhang, Li, Xuandong.  2016.  Carraybound: Static Array Bounds Checking in C Programs Based on Taint Analysis. Proceedings of the 8th Asia-Pacific Symposium on Internetware. :81–90.

C programming language never performs automatic bounds checking in order to speed up execution. But bounds checking is absolutely necessary in any program. Because if a variable is out-of-bounds, some serious errors may occur during execution, such as endless loop or buffer overflows. When there are arrays used in a program, the index of an array must be within the boundary of the array. But programmers always miss the array bounds checking or do not perform a correct array bounds checking. In this paper, we perform static analysis based on taint analysis and data flow analysis to detect which arrays do not have correct array bounds checking in the program. And we implement an automatic static tool, Carraybound. And the experimental results show that Carraybound can work effectively and efficiently.

Gao, Hongcan, Zhu, Jingwen, Liu, Lei, Xu, Jing, Wu, Yanfeng, Liu, Ao.  2019.  Detecting SQL Injection Attacks Using Grammar Pattern Recognition and Access Behavior Mining. 2019 IEEE International Conference on Energy Internet (ICEI). :493–498.
SQL injection attacks are a kind of the greatest security risks on Web applications. Much research has been done to detect SQL injection attacks by rule matching and syntax tree. However, due to the complexity and variety of SQL injection vulnerabilities, these approaches fail to detect unknown and variable SQL injection attacks. In this paper, we propose a model, ATTAR, to detect SQL injection attacks using grammar pattern recognition and access behavior mining. The most important idea of our model is to extract and analyze features of SQL injection attacks in Web access logs. To achieve this goal, we first extract and customize Web access log fields from Web applications. Then we design a grammar pattern recognizer and an access behavior miner to obtain the grammatical and behavioral features of SQL injection attacks, respectively. Finally, based on two feature sets, machine learning algorithms, e.g., Naive Bayesian, SVM, ID3, Random Forest, and K-means, are used to train and detect our model. We evaluated our model on these two feature sets, and the results show that the proposed model can effectively detect SQL injection attacks with lower false negative rate and false positive rate. In addition, comparing the accuracy of our model based on different algorithms, ID3 and Random Forest have a better ability to detect various kinds of SQL injection attacks.