Visible to the public Biblio

Found 567 results

Filters: First Letter Of Last Name is H  [Clear All Filters]
A B C D E F G [H] I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
H
H. Bahrami, K. Hajsadeghi.  2015.  "Circuit design to improve security of telecommunication devices". 2015 IEEE Conference on Technologies for Sustainability (SusTech). :171-175.

Security in mobile handsets of telecommunication standards such as GSM, Project 25 and TETRA is very important, especially when governments and military forces use handsets and telecommunication devices. Although telecommunication could be quite secure by using encryption, coding, tunneling and exclusive channel, attackers create new ways to bypass them without the knowledge of the legitimate user. In this paper we introduce a new, simple and economical circuit to warn the user in cases where the message is not encrypted because of manipulation by attackers or accidental damage. This circuit not only consumes very low power but also is created to sustain telecommunication devices in aspect of security and using friendly. Warning to user causes the best practices of telecommunication devices without wasting time and energy for fault detection.

H. Chi, Y. Chen, T. Jin, X. Jin, S. Zheng, X. Zhang.  2015.  "Photonics-assisted compressive sensing for sparse signal acquisition". 2015 Opto-Electronics and Communications Conference (OECC). :1-2.

Compressive sensing (CS) is a novel technology for sparse signal acquisition with sub-Nyquist sampling rate but with relative high resolution. Photonics-assisted CS has attracted much attention recently due the benefit of wide bandwidth provided by photonics. This paper discusses the approaches to realizing photonics-assisted CS.

H. K. Sharma, R. Tomar, J. C. Patni.  2015.  "HRJ_encryption: An ASCII code based encryption algorithm and its implementation". 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom). :1024-1027.

The transmission of data over a common transmission media revolute the world of information sharing from personal desktop to cloud computing. But the risk of the information theft has increased in the same ratio by the third party working on the same channel. The risk can be avoided using the suitable encryption algorithm. Using the best suited algorithm the transmitted data will be encrypted before placing it on the common channel. Using the public key or the private key the encrypted data can be decrypted by the authenticated user. It will avoid the risk of information theft by the unauthenticated user. In this work we have proposed an encryption algorithm which uses the ASCII code to encrypt the plain text. The common key will be used by sender or receiver to encrypt and decrypt the text for secure communication.

H. Kiragu, G. Kamucha, E. Mwangi.  2015.  "A fast procedure for acquisition and reconstruction of magnetic resonance images using compressive sampling". AFRICON 2015. :1-5.

This paper proposes a fast and robust procedure for sensing and reconstruction of sparse or compressible magnetic resonance images based on the compressive sampling theory. The algorithm starts with incoherent undersampling of the k-space data of the image using a random matrix. The undersampled data is sparsified using Haar transformation. The Haar transform coefficients of the k-space data are then reconstructed using the orthogonal matching Pursuit algorithm. The reconstructed coefficients are inverse transformed into k-space data and then into the image in spatial domain. Finally, a median filter is used to suppress the recovery noise artifacts. Experimental results show that the proposed procedure greatly reduces the image data acquisition time without significantly reducing the image quality. The results also show that the error in the reconstructed image is reduced by median filtering.

H. M. Ruan, M. H. Tsai, Y. N. Huang, Y. H. Liao, C. L. Lei.  2015.  "Discovery of De-identification Policies Considering Re-identification Risks and Information Loss". 2015 10th Asia Joint Conference on Information Security. :69-76.

In data analysis, it is always a tough task to strike the balance between the privacy and the applicability of the data. Due to the demand for individual privacy, the data are being more or less obscured before being released or outsourced to avoid possible privacy leakage. This process is so called de-identification. To discuss a de-identification policy, the most important two aspects should be the re-identification risk and the information loss. In this paper, we introduce a novel policy searching method to efficiently find out proper de-identification policies according to acceptable re-identification risk while retaining the information resided in the data. With the UCI Machine Learning Repository as our real world dataset, the re-identification risk can therefore be able to reflect the true risk of the de-identified data under the de-identification policies. Moreover, using the proposed algorithm, one can then efficiently acquire policies with higher information entropy.

H. S. Jeon, H. Jung, W. Chun.  2015.  "An extended web browser for id/locator separation network". 2015 International Conference on Information and Communication Technology Convergence (ICTC). :749-754.

With the pretty prompt growth in Internet content, the main usage pattern of internet is shifting from traditional host-to-host model to content dissemination model. To support content distribution, content delivery networks (CDNs) gives an ad-hoc solution and some of future internet projects suggest a clean-slate design. Web applications have become one of the fundamental internet services. How to effectively support the popular browser-based web application is one of keys to success for future internet projects. This paper proposes the IDNet-based web applications. IDNet consists of id/locator separation scheme and domain-insulated autonomous network architecture (DIANA) which redesign the future internet in the clean slate basis. We design and develop an IDNet Browser based on the open source Qt. IDNet browser enables ID fetching and rendering by both `idp:/' schemes URID (Universal Resource Identifier) and `http:/' schemes URI in HTML The experiment shows that it can well be applicable to the IDNet test topology.

H. S. Jeon, H. Jung, W. Chun.  2015.  "ID Based Web Browser with P2P Property". 2015 9th International Conference on Future Generation Communication and Networking (FGCN). :41-44.

The main usage pattern of internet is shifting from traditional host-to-host central model to content dissemination model. It leads to the pretty prompt growth in Internet content. CDN and P2P are two mainstream techmologies to provide streaming content services in the current Internet. In recent years, some researchers have begun to focus on CDN-P2P-hybrid architecture and ISP-friendly P2P content delivery technology. Web applications have become one of the fundamental internet services. How to effectively support the popular browser-based web application is one of keys to success for future internet projects. This paper proposes ID based browser with caching in IDNet. IDNet consists of id/locator separation scheme and domain-insulated autonomous network architecture (DIANA) which redesign the future internet in the clean slate basis. Experiment shows that ID web browser with caching function can support how to disseminate content and how to find the closet network in IDNet having identical contents.

H. Taha, E. Alsusa.  2015.  "A MIMO Precoding Based Physical Layer Security Technique for Key Exchange Encryption". 2015 IEEE 81st Vehicular Technology Conference (VTC Spring). :1-5.

Secret key establishment is considered to be one of the main challenging issues in cryptography. Many security algorithms are implemented in practice using complicated mathematical methods to exchange secret keys, but those methods are not desirable in power limited terminals such as cellular and sensor networks. In this paper, we propose a physical layer method for exchanging secret key bits in precoding based multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. The proposed method uniquely relates the key bits to the indices of the precoding matrix used for MIMO channel precoding. The basic idea of the technique is to utilize a MIMO-OFDM precoding codebook. Comparative analysis with respect to the average number of mismatch bits, named key error rate (KER), shows an interesting lead for the new method relative to existing work. In addition, it will be shown that the proposed technique requires lower computation per byte per secret key.

H. Ulusoy, M. Kantarcioglu, B. Thuraisingham, L. Khan.  2015.  "Honeypot based unauthorized data access detection in MapReduce systems". 2015 IEEE International Conference on Intelligence and Security Informatics (ISI). :126-131.

The data processing capabilities of MapReduce systems pioneered with the on-demand scalability of cloud computing have enabled the Big Data revolution. However, the data controllers/owners worried about the privacy and accountability impact of storing their data in the cloud infrastructures as the existing cloud computing solutions provide very limited control on the underlying systems. The intuitive approach - encrypting data before uploading to the cloud - is not applicable to MapReduce computation as the data analytics tasks are ad-hoc defined in the MapReduce environment using general programming languages (e.g, Java) and homomorphic encryption methods that can scale to big data do not exist. In this paper, we address the challenges of determining and detecting unauthorized access to data stored in MapReduce based cloud environments. To this end, we introduce alarm raising honeypots distributed over the data that are not accessed by the authorized MapReduce jobs, but only by the attackers and/or unauthorized users. Our analysis shows that unauthorized data accesses can be detected with reasonable performance in MapReduce based cloud environments.

Ha, Dinh Truc, Retière, Nicolas, Caputo, Jean-Guy.  2019.  A New Metric to Quantify the Vulnerability of Power Grids. 2019 International Conference on System Science and Engineering (ICSSE). :206—213.
Major blackouts are due to cascading failures in power systems. These failures usually occur at vulnerable links of the network. To identify these, indicators have already been defined using complex network theory. However, most of these indicators only depend on the topology of the grid; they fail to detect the weak links. We introduce a new metric to identify the vulnerable lines, based on the load-flow equations and the grid geometry. Contrary to the topological indicators, ours is built from the electrical equations and considers the location and magnitude of the loads and of the power generators. We apply this new metric to the IEEE 118-bus system and compare its prediction of weak links to the ones given by an industrial software. The agreement is very well and shows that using our indicator a simple examination of the network and its generator and load distribution suffices to find the weak lines.
Ha, Duy An, Nguyen, Kha Tho, Zao, John K..  2016.  Efficient Authentication of Resource-constrained IoT Devices Based on ECQV Implicit Certificates and Datagram Transport Layer Security Protocol. Proceedings of the Seventh Symposium on Information and Communication Technology. :173–179.

This paper introduces a design and implementation of a security scheme for the Internet of Things (IoT) based on ECQV Implicit Certificates and Datagram Transport Layer Security (DTLS) protocol. In this proposed security scheme, Elliptic curve cryptography based ECQV implicit certificate plays a key role allowing mutual authentication and key establishment between two resource-constrained IoT devices. We present how IoT devices get ECQV implicit certificates and use them for authenticated key exchange in DTLS. An evaluation of execution time of the implementation is also conducted to assess the efficiency of the solution.

Ha, Taehyun, Lee, Sangwon, Kim, Sangyeon.  2018.  Designing Explainability of an Artificial Intelligence System. Proceedings of the Technology, Mind, and Society. :14:1–14:1.
Explainability and accuracy of the machine learning algorithms usually laid on a trade-off relationship. Several algorithms such as deep-learning artificial neural networks have high accuracy but low explainability. Since there were only limited ways to access the learning and prediction processes in algorithms, researchers and users were not able to understand how the results were given to them. However, a recent project, explainable artificial intelligence (XAI) by DARPA, showed that AI systems can be highly explainable but also accurate. Several technical reports of XAI suggested ways of extracting explainable features and their positive effects on users; the results showed that explainability of AI was helpful to make users understand and trust the system. However, only a few studies have addressed why the explainability can bring positive effects to users. We suggest theoretical reasons from the attribution theory and anthropomorphism studies. Trough a review, we develop three hypotheses: (1) causal attribution is a human nature and thus a system which provides casual explanation on their process will affect users to attribute the result of system; (2) Based on the attribution results, users will perceive the system as human-like and which will be a motivation of anthropomorphism; (3) The system will be perceived by the users through the anthropomorphism. We provide a research framework for designing causal explainability of an AI system and discuss the expected results of the research.
Haah, Jeongwan, Harrow, Aram W., Ji, Zhengfeng, Wu, Xiaodi, Yu, Nengkun.  2016.  Sample-optimal Tomography of Quantum States. Proceedings of the Forty-eighth Annual ACM Symposium on Theory of Computing. :913–925.

It is a fundamental problem to decide how many copies of an unknown mixed quantum state are necessary and sufficient to determine the state. This is the quantum analogue of the problem of estimating a probability distribution given some number of samples. Previously, it was known only that estimating states to error є in trace distance required O(dr2/є2) copies for a d-dimensional density matrix of rank r. Here, we give a measurement scheme (POVM) that uses O( (dr/ δ ) ln(d/δ) ) copies to estimate ρ to error δ in infidelity. This implies O( (dr / є2)· ln(d/є) ) copies suffice to achieve error є in trace distance. For fixed d, our measurement can be implemented on a quantum computer in time polynomial in n. We also use the Holevo bound from quantum information theory to prove a lower bound of Ω(dr/є2)/ log(d/rє) copies needed to achieve error є in trace distance. This implies a lower bound Ω(dr/δ)/log(d/rδ) for the estimation error δ in infidelity. These match our upper bounds up to log factors. Our techniques can also show an Ω(r2d/δ) lower bound for measurement strategies in which each copy is measured individually and then the outcomes are classically post-processed to produce an estimate. This matches the known achievability results and proves for the first time that such “product” measurements have asymptotically suboptimal scaling with d and r.

Haah, Jeongwan, Harrow, Aram W., Ji, Zhengfeng, Wu, Xiaodi, Yu, Nengkun.  2016.  Sample-optimal Tomography of Quantum States. Proceedings of the Forty-eighth Annual ACM Symposium on Theory of Computing. :913–925.

It is a fundamental problem to decide how many copies of an unknown mixed quantum state are necessary and sufficient to determine the state. This is the quantum analogue of the problem of estimating a probability distribution given some number of samples. Previously, it was known only that estimating states to error є in trace distance required O(dr2/є2) copies for a d-dimensional density matrix of rank r. Here, we give a measurement scheme (POVM) that uses O( (dr/ δ ) ln(d/δ) ) copies to estimate ρ to error δ in infidelity. This implies O( (dr / є2)· ln(d/є) ) copies suffice to achieve error є in trace distance. For fixed d, our measurement can be implemented on a quantum computer in time polynomial in n. We also use the Holevo bound from quantum information theory to prove a lower bound of Ω(dr/є2)/ log(d/rє) copies needed to achieve error є in trace distance. This implies a lower bound Ω(dr/δ)/log(d/rδ) for the estimation error δ in infidelity. These match our upper bounds up to log factors. Our techniques can also show an Ω(r2d/δ) lower bound for measurement strategies in which each copy is measured individually and then the outcomes are classically post-processed to produce an estimate. This matches the known achievability results and proves for the first time that such “product” measurements have asymptotically suboptimal scaling with d and r.

Haakensen, T., Thulasiraman, P..  2017.  Enhancing Sink Node Anonymity in Tactical Sensor Networks Using a Reactive Routing Protocol. 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON). :115–121.

Tactical wireless sensor networks (WSNs) are deployed over a region of interest for mission centric operations. The sink node in a tactical WSN is the aggregation point of data processing. Due to its essential role in the network, the sink node is a high priority target for an attacker who wishes to disable a tactical WSN. This paper focuses on the mitigation of sink-node vulnerability in a tactical WSN. Specifically, we study the issue of protecting the sink node through a technique known as k-anonymity. To achieve k-anonymity, we use a specific routing protocol designed to work within the constraints of WSN communication protocols, specifically IEEE 802.15.4. We use and modify the Lightweight Ad hoc On-Demand Next Generation (LOADng) reactive-routing protocol to achieve anonymity. This modified LOADng protocol prevents an attacker from identifying the sink node without adding significant complexity to the regular sensor nodes. We simulate the modified LOADng protocol using a custom-designed simulator in MATLAB. We demonstrate the effectiveness of our protocol and also show some of the performance tradeoffs that come with this method.

Habeeb, Ibtisam Joda, Muhajjar, Ra'ad A..  2016.  Secured Wireless Sensor Network Using Improved Key Management. Proceedings of the Fifth International Conference on Network, Communication and Computing. :302–305.

Wireless Sensor Network (WSN) consists of a numerous of small devices called sensor which has a limitation in resources such as low energy, memory, and computation. Sensors deployed in a harsh environment and vulnerable to various security issues and due to the resource restriction in a sensor, key management and provide robust security in this type of networks is a challenge. keys may be used in two ways in cryptography is symmetric or asymmetric, asymmetric is required more communication, memory, and computing when compared with symmetric, so it is not appropriate for WSN. In this paper, key management scheme based on symmetric keys has been proposed where each node uses pseudo-random generator (PRNG)to generate key that is shared with base station based on pre-distributed initial key and CBC - RC5 to reached to confidently, integrity and authentication.

Habib, S. M., Alexopoulos, N., Islam, M. M., Heider, J., Marsh, S., Müehlhäeuser, M..  2018.  Trust4App: Automating Trustworthiness Assessment of Mobile Applications. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :124–135.

Smartphones have become ubiquitous in our everyday lives, providing diverse functionalities via millions of applications (apps) that are readily available. To achieve these functionalities, apps need to access and utilize potentially sensitive data, stored in the user's device. This can pose a serious threat to users' security and privacy, when considering malicious or underskilled developers. While application marketplaces, like Google Play store and Apple App store, provide factors like ratings, user reviews, and number of downloads to distinguish benign from risky apps, studies have shown that these metrics are not adequately effective. The security and privacy health of an application should also be considered to generate a more reliable and transparent trustworthiness score. In order to automate the trustworthiness assessment of mobile applications, we introduce the Trust4App framework, which not only considers the publicly available factors mentioned above, but also takes into account the Security and Privacy (S&P) health of an application. Additionally, it considers the S&P posture of a user, and provides an holistic personalized trustworthiness score. While existing automatic trustworthiness frameworks only consider trustworthiness indicators (e.g. permission usage, privacy leaks) individually, Trust4App is, to the best of our knowledge, the first framework to combine these indicators. We also implement a proof-of-concept realization of our framework and demonstrate that Trust4App provides a more comprehensive, intuitive and actionable trustworthiness assessment compared to existing approaches.

Haciosman, M., Bin Ye, Howells, G..  2014.  Protecting and Identifiying Smartphone Apps Using Icmetrics. Emerging Security Technologies (EST), 2014 Fifth International Conference on. :94-98.

As web-server spoofing is increasing, we investigate a novel technology termed ICmetrics, used to identify fraud for given software/hardware programs based on measurable quantities/features. ICmetrics technology is based on extracting features from digital systems' operation that may be integrated together to generate unique identifiers for each of the systems or create unique profiles that describe the systems' actual behavior. This paper looks at the properties of the several behaviors as a potential ICmetrics features to identify android apps, it presents several quality features which meet the ICmetrics requirements and can be used for encryption key generation. Finally, the paper identifies four android apps and verifies the use of ICmetrics by identifying a spoofed app as a different app altogether.

Hadagali, C..  2017.  Multicore implementation of EME2 AES disk encryption algorithm using OpenMP. 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.

Volume of digital data is increasing at a faster rate and the security of the data is at risk while being transit on a network as well as at rest. The execution time of full disk encryption in large servers is significant because of the computational complexity associated with disk encryption. Hence it is necessary to reduce the execution time of full disk encryption from the application point of view. In this work a full disk encryption algorithm namely EME2 AES (Encrypt Mix Encrypt V2 Advanced Encryption Standard) is analyzed. The execution speed of this algorithm is reduced by means of multicore compatible parallel implementation which makes use of available cores. Parallel implementation is executed on a multicore machine with 8 cores and speed up on the multicore implementation is measured. Results show that the multicore implementation of EME2 AES using OpenMP is up to 2.85 times faster than sequential execution for the chosen infrastructure and data range.

Hadar, Ethan, Hassanzadeh, Amin.  2019.  Big Data Analytics on Cyber Attack Graphs for Prioritizing Agile Security Requirements. 2019 IEEE 27th International Requirements Engineering Conference (RE). :330–339.

In enterprise environments, the amount of managed assets and vulnerabilities that can be exploited is staggering. Hackers' lateral movements between such assets generate a complex big data graph, that contains potential hacking paths. In this vision paper, we enumerate risk-reduction security requirements in large scale environments, then present the Agile Security methodology and technologies for detection, modeling, and constant prioritization of security requirements, agile style. Agile Security models different types of security requirements into the context of an attack graph, containing business process targets and critical assets identification, configuration items, and possible impacts of cyber-attacks. By simulating and analyzing virtual adversary attack paths toward cardinal assets, Agile Security examines the business impact on business processes and prioritizes surgical requirements. Thus, handling these requirements backlog that are constantly evaluated as an outcome of employing Agile Security, gradually increases system hardening, reduces business risks and informs the IT service desk or Security Operation Center what remediation action to perform next. Once remediated, Agile Security constantly recomputes residual risk, assessing risk increase by threat intelligence or infrastructure changes versus defender's remediation actions in order to drive overall attack surface reduction.

Haddadi, F., Morgan, J., Filho, E.G., Zincir-Heywood, A.N..  2014.  Botnet Behaviour Analysis Using IP Flows: With HTTP Filters Using Classifiers. Advanced Information Networking and Applications Workshops (WAINA), 2014 28th International Conference on. :7-12.

Botnets are one of the most destructive threats against the cyber security. Recently, HTTP protocol is frequently utilized by botnets as the Command and Communication (C&C) protocol. In this work, we aim to detect HTTP based botnet activity based on botnet behaviour analysis via machine learning approach. To achieve this, we employ flow-based network traffic utilizing NetFlow (via Softflowd). The proposed botnet analysis system is implemented by employing two different machine learning algorithms, C4.5 and Naive Bayes. Our results show that C4.5 learning algorithm based classifier obtained very promising performance on detecting HTTP based botnet activity.

Haddouti, Samia El, Ech-Cherif El Kettani, M. Dafir.  2019.  Analysis of Identity Management Systems Using Blockchain Technology. 2019 International Conference on Advanced Communication Technologies and Networking (CommNet). :1–7.
The emergence of Blockchain technology as the biggest innovations of the 21stcentury, has given rise to new concepts of Identity Management to deal with the privacy and security challenges on the one hand, and to enhance the decentralization and user control in transactions on Blockchain infrastructures on the other hand. This paper investigates and gives analysis of the most popular Identity Management Systems using Blockchain: uPort, Sovrin, and ShoCard. It then evaluates them under a set of features of digital identity that characterizes the successful of an Identity Management solution. The result of the comparative analysis is presented in a concise way to allow readers to find out easily which systems satisfy what requirements in order to select the appropriate one to fit into a specific scenario.
Hadj, M. A. El, Erradi, M., Khoumsi, A., Benkaouz, Y..  2018.  Validation and Correction of Large Security Policies: A Clustering and Access Log Based Approach. 2018 IEEE International Conference on Big Data (Big Data). :5330-5332.

In big data environments with big number of users and high volume of data, we need to manage the corresponding huge number of security policies. Due to the distributed management of these policies, they may contain several anomalies, such as conflicts and redundancies, which may lead to both safety and availability problems. The distributed systems guided by such security policies produce a huge number of access logs. Due to potential security breaches, the access logs may show the presence of non-allowed accesses. This may also be a consequence of conflicting rules in the security policies. In this paper, we present an ongoing work on developing an environment for verifying and correcting security policies. To make the approach efficient, an access log is used as input to determine suspicious parts of the policy that should be considered. The approach is also made efficient by clustering the policy and the access log and considering separately the obtained clusters. The clustering technique and the use of access log significantly reduces the complexity of the suggested approach, making it scalable for large amounts of data.

Haefner, Kyle, Ray, Indrakshi.  2019.  ComplexIoT: Behavior-Based Trust For IoT Networks. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :56—65.

This work takes a novel approach to classifying the behavior of devices by exploiting the single-purpose nature of IoT devices and analyzing the complexity and variance of their network traffic. We develop a formalized measurement of complexity for IoT devices, and use this measurement to precisely tune an anomaly detection algorithm for each device. We postulate that IoT devices with low complexity lead to a high confidence in their behavioral model and have a correspondingly more precise decision boundary on their predicted behavior. Conversely, complex general purpose devices have lower confidence and a more generalized decision boundary. We show that there is a positive correlation to our complexity measure and the number of outliers found by an anomaly detection algorithm. By tuning this decision boundary based on device complexity we are able to build a behavioral framework for each device that reduces false positive outliers. Finally, we propose an architecture that can use this tuned behavioral model to rank each flow on the network and calculate a trust score ranking of all traffic to and from a device which allows the network to autonomously make access control decisions on a per-flow basis.

Hafeez, Azeem, Topolovec, Kenneth, Awad, Selim.  2019.  ECU Fingerprinting through Parametric Signal Modeling and Artificial Neural Networks for In-vehicle Security against Spoofing Attacks. 2019 15th International Computer Engineering Conference (ICENCO). :29—38.
Fully connected autonomous vehicles are more vulnerable than ever to hacking and data theft. The controller area network (CAN) protocol is used for communication between in-vehicle control networks (IVN). The absence of basic security features of this protocol, like message authentication, makes it quite vulnerable to a wide range of attacks including spoofing attacks. As traditional cybersecurity methods impose limitations in ensuring confidentiality and integrity of transmitted messages via CAN, a new technique has emerged among others to approve its reliability in fully authenticating the CAN messages. At the physical layer of the communication system, the method of fingerprinting the messages is implemented to link the received signal to the transmitting electronic control unit (ECU). This paper introduces a new method to implement the security of modern electric vehicles. The lumped element model is used to characterize the channel-specific step response. ECU and channel imperfections lead to a unique transfer function for each transmitter. Due to the unique transfer function, the step response for each transmitter is unique. In this paper, we use control system parameters as a feature-set, afterward, a neural network is used transmitting node identification for message authentication. A dataset collected from a CAN network with eight-channel lengths and eight ECUs to evaluate the performance of the suggested method. Detection results show that the proposed method achieves an accuracy of 97.4% of transmitter detection.