Visible to the public Biblio

Found 145 results

Filters: First Letter Of Last Name is I  [Clear All Filters]
A B C D E F G H [I] J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Islam, Ashraful, Zhang, Yuexi, Yin, Dong, Camps, Octavia, Radke, Richard J..  2018.  Correlating Belongings with Passengers in a Simulated Airport Security Checkpoint. Proceedings of the 12th International Conference on Distributed Smart Cameras. :14:1–14:7.
Automatic algorithms for tracking and associating passengers and their divested objects at an airport security screening checkpoint would have great potential for improving checkpoint efficiency, including flow analysis, theft detection, line-of-sight maintenance, and risk-based screening. In this paper, we present algorithms for these tracking and association problems and demonstrate their effectiveness in a full-scale physical simulation of an airport security screening checkpoint. Our algorithms leverage both hand-crafted and deep-learning-based approaches for passenger and bin tracking, and are able to accurately track and associate objects through a ceiling-mounted multicamera array. We validate our algorithm on ground-truthed datasets collected at the simulated checkpoint that reflect natural passenger behavior, achieving high rates of passenger/object/transfer event detection while maintaining low false alarm and mismatch rates.
Islam, Chadni, Babar, Muhammad Ali, Nepal, Surya.  2019.  An Ontology-Driven Approach to Automating the Process of Integrating Security Software Systems. 2019 IEEE/ACM International Conference on Software and System Processes (ICSSP). :54–63.

A wide variety of security software systems need to be integrated into a Security Orchestration Platform (SecOrP) to streamline the processes of defending against and responding to cybersecurity attacks. Lack of interpretability and interoperability among security systems are considered the key challenges to fully leverage the potential of the collective capabilities of different security systems. The processes of integrating security systems are repetitive, time-consuming and error-prone; these processes are carried out manually by human experts or using ad-hoc methods. To help automate security systems integration processes, we propose an Ontology-driven approach for Security OrchestrAtion Platform (OnSOAP). The developed solution enables interpretability, and interoperability among security systems, which may exist in operational silos. We demonstrate OnSOAP's support for automated integration of security systems to execute the incident response process with three security systems (Splunk, Limacharlie, and Snort) for a Distributed Denial of Service (DDoS) attack. The evaluation results show that OnSOAP enables SecOrP to interpret the input and output of different security systems, produce error-free integration details, and make security systems interoperable with each other to automate and accelerate an incident response process.

Islam, M., Rahaman, S., Meng, N., Hassanshahi, B., Krishnan, P., Yao, D. D..  2020.  Coding Practices and Recommendations of Spring Security for Enterprise Applications. 2020 IEEE Secure Development (SecDev). :49—57.
Spring security is tremendously popular among practitioners for its ease of use to secure enterprise applications. In this paper, we study the application framework misconfiguration vulnerabilities in the light of Spring security, which is relatively understudied in the existing literature. Towards that goal, we identify 6 types of security anti-patterns and 4 insecure vulnerable defaults by conducting a measurement-based approach on 28 Spring applications. Our analysis shows that security risks associated with the identified security anti-patterns and insecure defaults can leave the enterprise application vulnerable to a wide range of high-risk attacks. To prevent these high-risk attacks, we also provide recommendations for practitioners. Consequently, our study has contributed one update to the official Spring security documentation while other security issues identified in this study are being considered for future major releases by Spring security community.
Islam, M. M., Karmakar, G., Kamruzzaman, J., Murshed, M..  2019.  Measuring Trustworthiness of IoT Image Sensor Data Using Other Sensors’ Complementary Multimodal Data. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :775–780.
Trust of image sensor data is becoming increasingly important as the Internet of Things (IoT) applications grow from home appliances to surveillance. Up to our knowledge, there exists only one work in literature that estimates trustworthiness of digital images applied to forensic applications, based on a machine learning technique. The efficacy of this technique is heavily dependent on availability of an appropriate training set and adequate variation of IoT sensor data with noise, interference and environmental condition, but availability of such data cannot be assured always. Therefore, to overcome this limitation, a robust method capable of estimating trustworthy measure with high accuracy is needed. Lowering cost of sensors allow many IoT applications to use multiple types of sensors to observe the same event. In such cases, complementary multimodal data of one sensor can be exploited to measure trust level of another sensor data. In this paper, for the first time, we introduce a completely new approach to estimate the trustworthiness of an image sensor data using another sensor's numerical data. We develop a theoretical model using the Dempster-Shafer theory (DST) framework. The efficacy of the proposed model in estimating trust level of an image sensor data is analyzed by observing a fire event using IoT image and temperature sensor data in a residential setup under different scenarios. The proposed model produces highly accurate trust level in all scenarios with authentic and forged image data.
Islam, M. N., Patil, V. C., Kundu, S..  2017.  Determining proximal geolocation of IoT edge devices via covert channel. 2017 18th International Symposium on Quality Electronic Design (ISQED). :196–202.

Many IoT devices are part of fixed critical infrastructure, where the mere act of moving an IoT device may constitute an attack. Moving pressure, chemical and radiation sensors in a factory can have devastating consequences. Relocating roadside speed sensors, or smart meters without knowledge of command and control center can similarly wreck havoc. Consequently, authenticating geolocation of IoT devices is an important problem. Unfortunately, an IoT device itself may be compromised by an adversary. Hence, location information from the IoT device cannot be trusted. Thus, we have to rely on infrastructure to obtain a proximal location. Infrastructure routers may similarly be compromised. Therefore, there must be a way to authenticate trusted routers remotely. Unfortunately, IP packets may be blocked, hijacked or forged by an adversary. Therefore IP packets are not trustworthy either. Thus, we resort to covert channels for authenticating Internet packet routers as an intermediate step towards proximal geolocation of IoT devices. Several techniques have been proposed in the literature to obtain the geolocation of an edge device, but it has been shown that a knowledgeable adversary can circumvent these techniques. In this paper, we survey the state-of-the-art geolocation techniques and corresponding adversarial countermeasures to evade geolocation to justify the use of covert channels on networks. We propose a technique for determining proximal geolocation using covert channel. Challenges and directions for future work are also explored.

Islam, M. S., Verma, H., Khan, L., Kantarcioglu, M..  2019.  Secure Real-Time Heterogeneous IoT Data Management System. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :228–235.
The growing adoption of IoT devices in our daily life engendered a need for secure systems to safely store and analyze sensitive data as well as the real-time data processing system to be as fast as possible. The cloud services used to store and process sensitive data are often come out to be vulnerable to outside threats. Furthermore, to analyze streaming IoT data swiftly, they are in need of a fast and efficient system. The Paper will envision the aspects of complexity dealing with real time data from various devices in parallel, building solution to ingest data from different IOT devices, forming a secure platform to process data in a short time, and using various techniques of IOT edge computing to provide meaningful intuitive results to users. The paper envisions two modules of building a real time data analytics system. In the first module, we propose to maintain confidentiality and integrity of IoT data, which is of paramount importance, and manage large-scale data analytics with real-time data collection from various IoT devices in parallel. We envision a framework to preserve data privacy utilizing Trusted Execution Environment (TEE) such as Intel SGX, end-to-end data encryption mechanism, and strong access control policies. Moreover, we design a generic framework to simplify the process of collecting and storing heterogeneous data coming from diverse IoT devices. In the second module, we envision a drone-based data processing system in real-time using edge computing and on-device computing. As, we know the use of drones is growing rapidly across many application domains including real-time monitoring, remote sensing, search and rescue, delivery of goods, security and surveillance, civil infrastructure inspection etc. This paper demonstrates the potential drone applications and their challenges discussing current research trends and provide future insights for potential use cases using edge and on-device computing.
Islam, Mafijul Md., Lautenbach, Aljoscha, Sandberg, Christian, Olovsson, Tomas.  2016.  A Risk Assessment Framework for Automotive Embedded Systems. Proceedings of the 2Nd ACM International Workshop on Cyber-Physical System Security. :3–14.

The automotive industry is experiencing a paradigm shift towards autonomous and connected vehicles. Coupled with the increasing usage and complexity of electrical and/or electronic systems, this introduces new safety and security risks. Encouragingly, the automotive industry has relatively well-known and standardised safety risk management practices, but security risk management is still in its infancy. In order to facilitate the derivation of security requirements and security measures for automotive embedded systems, we propose a specifically tailored risk assessment framework, and we demonstrate its viability with an industry use-case. Some of the key features are alignment with existing processes for functional safety, and usability for non-security specialists. The framework begins with a threat analysis to identify the assets, and threats to those assets. The following risk assessment process consists of an estimation of the threat level and of the impact level. This step utilises several existing standards and methodologies, with changes where necessary. Finally, a security level is estimated which is used to formulate high-level security requirements. The strong alignment with existing standards and processes should make this framework well-suited for the needs in the automotive industry.

Islam, Md. Jahidul, Mahin, Md., Roy, Shanto, Debnath, Biplab Chandra, Khatun, Ayesha.  2019.  DistBlackNet: A Distributed Secure Black SDN-IoT Architecture with NFV Implementation for Smart Cities. 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE). :1—6.

Internet of Things (IoT) is a key emerging technology which aims to connect objects over the internet. Software Defined Networking (SDN) is another new intelligent technology within networking domain which increases the network performance and provides better security, reliability, and privacy using dynamic software programs. In this paper, we have proposed a distributed secure Black SDN-IoT architecture with NFV implementation for smart cities. We have incorporated Black SDN that is highly secured SDN which gives better result in network performances, security, and privacy and secures both metadata and payload within each layer. This architecture also tried to introduce an approach which is more effective for building a cluster by means of Black SDN. Black SDN-loT with NFV concept brings benefits to the related fields in terms of energy savings and load balancing. Moreover, Multiple distributed controller have proposed to improve availability, integrity, privacy, confidentiality and etc. In the proposed architecture, the Black network provides higher security of each network layer comparative to the conventional network. Finally, this paper has discussed the architectural design of distributed secure Black SDN-IoT with NFV for smart cities and research challenges.

Islam, Mohammad A., Ren, Shaolei.  2018.  Ohm's Law in Data Centers: A Voltage Side Channel for Timing Power Attacks. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :146-162.

Maliciously-injected power load, a.k.a. power attack, has recently surfaced as a new egregious attack vector for dangerously compromising the data center availability. This paper focuses on the emerging threat of power attacks in a multi-tenant colocation data center, an important type of data center where multiple tenants house their own servers and share the power distribution system. Concretely, we discover a novel physical side channel –- a voltage side channel –- which leaks the benign tenants' power usage information at runtime and helps an attacker precisely time its power attacks. The key idea we exploit is that, due to the Ohm's Law, the high-frequency switching operation (40\textasciitilde100kHz) of the power factor correction circuit universally built in today's server power supply units creates voltage ripples in the data center power lines. Importantly, without overlapping the grid voltage in the frequency domain, the voltage ripple signals can be easily sensed by the attacker to track the benign tenants' runtime power usage and precisely time its power attacks. We evaluate the timing accuracy of the voltage side channel in a real data center prototype, demonstrating that the attacker can extract benign tenants' power pattern with a great accuracy (correlation coefficient = 0.90+) and utilize 64% of all the attack opportunities without launching attacks randomly or consecutively. Finally, we highlight a few possible defense strategies and extend our study to more complex three-phase power distribution systems used in large multi-tenant data centers.

Islam, Noman.  2019.  A Secure Service Discovery Scheme for Mobile ad hoc Network using Artificial Deep Neural Network. 2019 International Conference on Frontiers of Information Technology (FIT). :133–1335.

In this paper, an agent-based cross-layer secure service discovery scheme has been presented. Service discovery in MANET is a critical task and it presents numerous security challenges. These threats can compromise the availability, privacy and integrity of service discovery process and infrastructure. This paper highlights various security challenges prevalent to service discovery in MANET. Then, in order to address these security challenges, the paper proposes a cross-layer, agent based secure service discovery scheme for MANET based on deep neural network. The software agents will monitor the intrusive activities in the network based on an Intrusion Detection System (IDS). The service discovery operation is performed based on periodic dissemination of service, routing and security information. The QoS provisioning is achieved by encapsulating QoS information in the periodic advertisements done by service providers. The proposed approach has been implemented in JIST/ SWANS simulator. The results show that proposed approach provides improved security, scalability, latency, packet delivery ratio and service discovery success ratio, for various simulation scenarios.

Islam, S., Welzl, M., Gjessing, S..  2018.  Lightweight and flexible single-path congestion control coupling. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1—6.

Communication between two Internet hosts using parallel connections may result in unwanted interference between the connections. In this dissertation, we propose a sender-side solution to address this problem by letting the congestion controllers of the different connections collaborate, correctly taking congestion control logic into account. Real-life experiments and simulations show that our solution works for a wide variety of congestion control mechanisms, provides great flexibility when allocating application traffic to the connections, and results in lower queuing delay and less packet loss.

Islam, S., Welzl, M., Hiorth, K., Hayes, D., Armitage, G., Gjessing, S..  2018.  ctrlTCP: Reducing latency through coupled, heterogeneous multi-flow TCP congestion control. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :214—219.

We present ctrlTCP, a method to combine the congestion controls of multiple TCP connections. In contrast to the previous methods such as the Congestion Manager, ctrlTCP can couple all TCP flows that leave one sender, traverse a common bottleneck (e.g., a home user's thin uplink) and arrive at different destinations. Using ns-2 simulations and an implementation in the FreeBSD kernel, we show that our mechanism reduces queuing delay, packet loss, and short flow completion times while enabling precise allocation of the share of the available bandwidth between the connections according to the needs of the applications.

Islam, S., Welzl, M., Gjessing, S..  2019.  How to Control a TCP: Minimally-Invasive Congestion Management for Datacenters. 2019 International Conference on Computing, Networking and Communications (ICNC). :121—125.

In multi-tenant datacenters, the hardware may be homogeneous but the traffic often is not. For instance, customers who pay an equal amount of money can get an unequal share of the bottleneck capacity when they do not open the same number of TCP connections. To address this problem, several recent proposals try to manipulate the traffic that TCP sends from the VMs. VCC and AC/DC are two new mechanisms that let the hypervisor control traffic by influencing the TCP receiver window (rwnd). This avoids changing the guest OS, but has limitations (it is not possible to make TCP increase its rate faster than it normally would). Seawall, on the other hand, completely rewrites TCP's congestion control, achieving fairness but requiring significant changes to both the hypervisor and the guest OS. There seems to be a need for a middle ground: a method to control TCP's sending rate without requiring a complete redesign of its congestion control. We introduce a minimally-invasive solution that is flexible enough to cater for needs ranging from weighted fairness in multi-tenant datacenters to potentially offering Internet-wide benefits from reduced interflow competition.

Islam, S. A., Sah, L. K., Katkoori, S..  2019.  DLockout: A Design Lockout Technique for Key Obfuscated RTL IP Designs. 2019 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS). :17–20.
Intellectual Property (IP) infringement including piracy and overproduction have emerged as significant threats in the semiconductor supply chain. Key-based obfuscation techniques (i.e., logic locking) are widely applied to secure legacy IP from such attacks. However, the fundamental question remains open whether an attacker is allowed an exponential amount of time to seek correct key or could it be useful to lock out the design in a non-destructive manner after several incorrect attempts. In this paper, we address this question with a robust design lockout technique. Specifically, we perform comparisons on obfuscation logic output that reflects the condition (correct or incorrect) of the applied key without changing the system behavior. The proposed approach, when combined with key obfuscation (logic locking) technique, increases the difficulty of reverse engineering key obfuscated RTL module. We provide security evaluation of DLockout against three common side-channel attacks followed by a quantitative assessment of the resilience. We conducted a set of experiments on four datapath intensive IPs and one crypto core for three different key lengths (32-, 64-, and 128-bit) under the typical design corner. On average, DLockout incurs negligible area, power, and delay overheads.
Islam, Safiqul, Welzl, Michael.  2016.  Start Me Up: Determining and Sharing TCP's Initial Congestion Window. Proceedings of the 2016 Applied Networking Research Workshop. :52–54.

When multiple TCP connections are used between the same host pair, they often share a common bottleneck – especially when they are encapsulated together, e.g. in VPN scenarios. Then, all connections after the first should not have to guess the right initial value for the congestion window, but rather get the appropriate value from other connections. This allows short flows to complete much faster – but it can also lead to large bursts that cause problems on their own. Prior work used timer-based pacing methods to alleviate this problem; we introduce a new algorithm that ``paces'' packets by instead correctly maintaining the ACK clock, and show its positive impact in combination with a previously presented congestion coupling algorithm.

Ismail, W. B. W., Widyarto, S., Ahmad, R. A. T. R., Ghani, K. A..  2017.  A generic framework for information security policy development. 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI). :1–6.

Information security policies are not easy to create unless organizations explicitly recognize the various steps required in the development process of an information security policy, especially in institutions of higher education that use enormous amounts of IT. An improper development process or a copied security policy content from another organization might also fail to execute an effective job. The execution could be aimed at addressing an issue such as the non-compliance to applicable rules and regulations even if the replicated policy is properly developed, referenced, cited in laws or regulations and interpreted correctly. A generic framework was proposed to improve and establish the development process of security policies in institutions of higher education. The content analysis and cross-case analysis methods were used in this study in order to gain a thorough understanding of the information security policy development process in institutions of higher education.

Ismail, Z., Leneutre, J., Bateman, D., Chen, L..  2015.  A Game-Theoretical Model for Security Risk Management of Interdependent ICT and Electrical Infrastructures. 2015 IEEE 16th International Symposium on High Assurance Systems Engineering. :101–109.

The communication infrastructure is a key element for management and control of the power system in the smart grid. The communication infrastructure, which can include equipment using off-the-shelf vulnerable operating systems, has the potential to increase the attack surface of the power system. The interdependency between the communication and the power system renders the management of the overall security risk a challenging task. In this paper, we address this issue by presenting a mathematical model for identifying and hardening the most critical communication equipment used in the power system. Using non-cooperative game theory, we model interactions between an attacker and a defender. We derive the minimum defense resources required and the optimal strategy of the defender that minimizes the risk on the power system. Finally, we evaluate the correctness and the efficiency of our model via a case study.

Ismari, D., Plusquellic, J., Lamech, C., Bhunia, S., Saqib, F..  2016.  On Detecting Delay Anomalies Introduced by Hardware Trojans. Proceedings of the 35th International Conference on Computer-Aided Design. :44:1–44:7.

A hardware Trojan (HT) detection method is presented that is based on measuring and detecting small systematic changes in path delays introduced by capacitive loading effects or series inserted gates of HTs. The path delays are measured using a high resolution on-chip embedded test structure called a time-to-digital converter (TDC) that provides approx. 25 ps of timing resolution. A calibration method for the TDC as well as a chip-averaging technique are demonstrated to nearly eliminate chip-to-chip and within-die process variation effects on the measured path delays across chips. This approach significantly improves the correlation between Trojan-free chips and a simulation-based golden model. Path delay tests are applied to multiple copies of a 90nm custom ASIC chip having two copies of an AES macro. The AES macros are exact replicas except for the insertion of several additional gates in the second hardware copy, which are designed to model HTs. Simple statistical detection methods are used to isolate and detect systematic changes introduced by these additional gates. We present hardware results which demonstrate that our proposed chip-averaging and calibration techniques in combination with a single nominal simulation model can be used to detect small delay anomalies introduced by the inserted gates of hardware Trojans.

Isnan Imran, Muh. Ikhdar, Putrada, Aji Gautama, Abdurohman, Maman.  2019.  Detection of Near Field Communication (NFC) Relay Attack Anomalies in Electronic Payment Cases using Markov Chain. 2019 Fourth International Conference on Informatics and Computing (ICIC). :1–4.
Near Field Communication (NFC) is a short- range wireless communication technology that supports several features, one of which is an electronic payment. NFC works at a limited distance to exchange information. In terms of security, NFC technology has a gap for attackers to carry out attacks by forwarding information illegally using the target NFC network. A relay attack that occurs due to the theft of some data by an attacker by utilizing close communication from NFC is one of them. Relay attacks can cause a lot of loss in terms of material sacrifice. It takes countermeasures to overcome the problem of electronic payments with NFC technology. Detection of anomalous data is one way that can be done. In an attack, several abnormalities can be detected which can be used to prevent an attack. Markov Chain is one method that can be used to detect relay attacks that occur in electronic payments using NFC. The result shows Markov chain can detect anomalies in relay attacks in the case of electronic payment.
Ispoglou, Kyriakos K., AlBassam, Bader, Jaeger, Trent, Payer, Mathias.  2018.  Block Oriented Programming: Automating Data-Only Attacks. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :1868-1882.

With the widespread deployment of Control-Flow Integrity (CFI), control-flow hijacking attacks, and consequently code reuse attacks, are significantly more difficult. CFI limits control flow to well-known locations, severely restricting arbitrary code execution. Assessing the remaining attack surface of an application under advanced control-flow hijack defenses such as CFI and shadow stacks remains an open problem. We introduce BOPC, a mechanism to automatically assess whether an attacker can execute arbitrary code on a binary hardened with CFI/shadow stack defenses. BOPC computes exploits for a target program from payload specifications written in a Turing-complete, high-level language called SPL that abstracts away architecture and program-specific details. SPL payloads are compiled into a program trace that executes the desired behavior on top of the target binary. The input for BOPC is an SPL payload, a starting point (e.g., from a fuzzer crash) and an arbitrary memory write primitive that allows application state corruption. To map SPL payloads to a program trace, BOPC introduces Block Oriented Programming (BOP), a new code reuse technique that utilizes entire basic blocks as gadgets along valid execution paths in the program, i.e., without violating CFI or shadow stack policies. We find that the problem of mapping payloads to program traces is NP-hard, so BOPC first reduces the search space by pruning infeasible paths and then uses heuristics to guide the search to probable paths. BOPC encodes the BOP payload as a set of memory writes. We execute 13 SPL payloads applied to 10 popular applications. BOPC successfully finds payloads and complex execution traces – which would likely not have been found through manual analysis – while following the target's Control-Flow Graph under an ideal CFI policy in 81% of the cases.

Issa, Abdullah, Murray, Toby, Ernst, Gidon.  2018.  In Search of Perfect Users: Towards Understanding the Usability of Converged Multi-Level Secure User Interfaces. Proceedings of the 30th Australian Conference on Computer-Human Interaction. :572-576.

Converged Multi-Level Secure systems allow users to interact with and freely move between applications and data of varying sensitivity on a single user interface. They promise unprecedented usability and security, especially in security-critical environments like Defence. Yet these promises rely on hard assumptions about secure user behaviour. We present initial work to test the validity of these assumptions in the absence of deception by an adversary. We conducted a user study with 21 participants on the Cross Domain Desktop Compositor. Chief amongst our findings is that the vast majority of participants (19 of 21) behave securely, even when doing so requires more effort than to behave insecurely. Our findings suggest that there is large scope for further research on converged Multi-Level Secure systems, and highlight the value of user studies to complement formal security analyses of critical systems.

Issa, H., Tar, J. K..  2020.  Tackling Actuator Saturation in Fixed Point Iteration-based Adaptive Control. 2020 IEEE 14th International Symposium on Applied Computational Intelligence and Informatics (SACI). :000221–000226.
The limited output of various drives means a challenge in controller design whenever the acceleration need of the "nominal trajectory to be tracked" temporarily exceeds the abilities of the saturated control system. The prevailing control design methods can tackle this problem either in a single theoretical step or in two consecutive steps. In this latter case in the first step the design happens without taking into account the actuator constraints, then apply a saturation compensator if the phenomenon of windup is observed. In the Fixed Point Iteration- based Adaptive Control (FPIAC) that has been developed as an alternative of the Lyapunov function-based approach the actuator saturation causes problems in its both elementary levels: in the kinematic/kinetic level where the desired acceleration is calculated, and in the iterative process that compensates the effects of modeling errors of the dynamic system under control and that of the external disturbances. The here presented approach tackles this problem in both levels by relatively simple considerations. To illustrate the method's efficiency simulation investigations were done in the FPIAC control of a modification of the van der Pol oscillator to which an additional strongly nonlinear term was added.
Itakura, Keisuke, Mori, Yojiro, Hasegawa, Hiroshi, Sato, Ken-ichi.  2019.  Design of and Resiliency Enhancement in Coarse/Fine Hybrid Granular Routing Optical Networks Based on Iterative Path-Pair-Loop Inflation. 2019 15th International Conference on the Design of Reliable Communication Networks (DRCN). :11–15.

A spectral-resource-utilization-efficient and highly resilient coarse granular routing optical network architecture is proposed. The improvement in network resiliency is realized by a novel concept named loop inflation that aims to enhance the geographical diversity of a working path and its redundant path. The trade-off between the inflation and the growth in circumference length of loops is controlled by the Simulated Annealing technique. Coarse granular routing is combined with resilient path design to realize higher spectral resource utilization. The routing scheme defines virtual direct links (VDLs) bridging distant nodes to alleviate the spectrum narrowing effect at the nodes traversed, allowing optical channels to be more densely accommodated by the fibers installed. Numerical experiments elucidate that the proposed networks successfully achieve a 30+0/0 route diversity improvement and a 12% fiber number reduction over conventional networks.

Ito, Keita, Masuda, Yoshihiro, Okamoto, Eiji.  2019.  A Chaos MIMO-Based Polar Concatenation Code for Secure Channel Coding. 2019 International Conference on Information Networking (ICOIN). :262—267.

For secure and high-quality wireless transmission, we propose a chaos multiple-input multiple-output (C-MIMO) transmission scheme, in which physical layer security and a channel coding effect with a coding rate of 1 are obtained by chaotic MIMO block modulation. In previous studies, we introduced a log-likelihood ratio (LLR) to C-MIMO to exploit LLR-based outer channel coding and turbo decoding, and obtained further coding gain. However, we only studied the concatenation of turbo code, low-density parity check (LDPC) code, and convolutional code which were relatively high-complexity or weak codes; thus, outer code having further low-complexity and strong error correction ability were expected. In particular, a transmission system with short and good code is required for control signaling, such as in 5G networks. Therefore, in this paper, we propose a polar code concatenation to C-MIMO, and introduce soft successive decoding (SCAD) and soft successive cancellation list decoding (SSCLD) as LLR-based turbo decoding for polar code. We numerically evaluate the bit error rate performance of the proposed scheme, and compare it to the conventional LDPC-concatenated transmission.

Ito, Toshitaka, Itotani, Yuri, Wakabayashi, Shin'ichi, Nagayama, Shinobu, Inagi, Masato.  2018.  A Nearest Neighbor Search Engine Using Distance-Based Hashing. 2018 International Conference on Field-Programmable Technology (FPT). :150—157.
This paper proposes an FPGA-based nearest neighbor search engine for high-dimensional data, in which nearest neighbor search is performed based on distance-based hashing. The proposed hardware search engine implements a nearest neighbor search algorithm based on an extension of flexible distance-based hashing (FDH, for short), which finds an exact solution with high probability. The proposed engine is a parallel processing and pipelined circuit so that search results can be obtained in a short execution time. Experimental results show the effectiveness and efficiency of the proposed engine.