Visible to the public Biblio

Found 2308 results

Filters: First Letter Of Last Name is K  [Clear All Filters]
Conference Paper
Ly, Son Thai, Do, Nhu-Tai, Lee, Guee-Sang, Kim, Soo-Hyung, Yang, Hyung-Jeong.  2019.  A 3d Face Modeling Approach for in-The-Wild Facial Expression Recognition on Image Datasets. 2019 IEEE International Conference on Image Processing (ICIP). :3492—3496.

This paper explores the benefits of 3D face modeling for in-the-wild facial expression recognition (FER). Since there is limited in-the-wild 3D FER dataset, we first construct 3D facial data from available 2D dataset using recent advances in 3D face reconstruction. The 3D facial geometry representation is then extracted by deep learning technique. In addition, we also take advantage of manipulating the 3D face, such as using 2D projected images of 3D face as additional input for FER. These features are then fused with that of 2D FER typical network. By doing so, despite using common approaches, we achieve a competent recognition accuracy on Real-World Affective Faces (RAF) database and Static Facial Expressions in the Wild (SFEW 2.0) compared with the state-of-the-art reports. To the best of our knowledge, this is the first time such a deep learning combination of 3D and 2D facial modalities is presented in the context of in-the-wild FER.

Abi-Antoun, Marwan, Khalaj, Ebrahim, Vanciu, Radu, Moghimi, Ahmad.  2016.  Abstract Runtime Structure for Reasoning About Security: Poster. Proceedings of the Symposium and Bootcamp on the Science of Security. :1–3.

We propose an interactive approach where analysts reason about the security of a system using an abstraction of its runtime structure, as opposed to looking at the code. They interactively refine a hierarchical object graph, set security properties on abstract objects or edges, query the graph, and investigate the results by studying highlighted objects or edges or tracing to the code. Behind the scenes, an inference analysis and an extraction analysis maintain the soundness of the graph with respect to the code.

Kuka, Mário, Vojanec, Kamil, Kučera, Jan, Benáček, Pavel.  2019.  Accelerated DDoS Attacks Mitigation using Programmable Data Plane. 2019 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS). :1–3.

DDoS attacks are a significant threat to internet service or infrastructure providers. This poster presents an FPGA-accelerated device and DDoS mitigation technique to overcome such attacks. Our work addresses amplification attacks whose goal is to generate enough traffic to saturate the victims links. The main idea of the device is to efficiently filter malicious traffic at high-speeds directly in the backbone infrastructure before it even reaches the victim's network. We implemented our solution for two FPGA platforms using the high-level description in P4, and we report on its performance in terms of throughput and hardware resources.

Duraisamy, Karthi, Lu, Hao, Pande, Partha Pratim, Kalyanaraman, Ananth.  2017.  Accelerating Graph Community Detection with Approximate Updates via an Energy-Efficient NoC. Proceedings of the 54th Annual Design Automation Conference 2017. :89:1–89:6.

Community detection is an advanced graph operation that is used to reveal tightly-knit groups of vertices (aka. communities) in real-world networks. Given the intractability of the problem, efficient heuristics are used in practice. Yet, even the best of these state-of-the-art heuristics can become computationally demanding over large inputs and can generate workloads that exhibit inherent irregularity in data movement on manycore platforms. In this paper, we posit that effective acceleration of the graph community detection operation can be achieved by reducing the cost of data movement through a combined innovation at both software and hardware levels. More specifically, we first propose an efficient software-level parallelization of community detection that uses approximate updates to cleverly exploit a diminishing returns property of the algorithm. Secondly, as a way to augment this innovation at the software layer, we design an efficient Wireless Network on Chip (WiNoC) architecture that is suited to handle the irregular on-chip data movements exhibited by the community detection algorithm under both unicast- and broadcast-heavy cache coherence protocols. Experimental results show that our resulting WiNoC-enabled manycore platform achieves on average 52% savings in execution time, without compromising on the quality of the outputs, when compared to a traditional manycore platform designed with a wireline mesh NoC and running community detection without employing approximate updates.

Datta, A., Kar, S., Sinopoli, B., Weerakkody, S..  2016.  Accountability in cyber-physical systems. 2016 Science of Security for Cyber-Physical Systems Workshop (SOSCYPS). :1–3.

Our position is that a key component of securing cyber-physical systems (CPS) is to develop a theory of accountability that encompasses both control and computing systems. We envision that a unified theory of accountability in CPS can be built on a foundation of causal information flow analysis. This theory will support design and analysis of mechanisms at various stages of the accountability regime: attack detection, responsibility-assignment (e.g., attack identification or localization), and corrective measures (e.g., via resilient control) As an initial step in this direction, we summarize our results on attack detection in control systems. We use the Kullback-Liebler (KL) divergence as a causal information flow measure. We then recover, using information flow analyses, a set of existing results in the literature that were previously proved using different techniques. These results cover passive detection, stealthy attack characterization, and active detection. This research direction is related to recent work on accountability in computational systems [1], [2], [3], [4]. We envision that by casting accountability theories in computing and control systems in terms of causal information flow, we can provide a common foundation to develop a theory for CPS that compose elements from both domains.

Noureddine, M. A., Marturano, A., Keefe, K., Bashir, M., Sanders, W. H..  2017.  Accounting for the Human User in Predictive Security Models. 2017 IEEE 22nd Pacific Rim International Symposium on Dependable Computing (PRDC). :329–338.

Given the growing sophistication of cyber attacks, designing a perfectly secure system is not generally possible. Quantitative security metrics are thus needed to measure and compare the relative security of proposed security designs and policies. Since the investigation of security breaches has shown a strong impact of human errors, ignoring the human user in computing these metrics can lead to misleading results. Despite this, and although security researchers have long observed the impact of human behavior on system security, few improvements have been made in designing systems that are resilient to the uncertainties in how humans interact with a cyber system. In this work, we develop an approach for including models of user behavior, emanating from the fields of social sciences and psychology, in the modeling of systems intended to be secure. We then illustrate how one of these models, namely general deterrence theory, can be used to study the effectiveness of the password security requirements policy and the frequency of security audits in a typical organization. Finally, we discuss the many challenges that arise when adopting such a modeling approach, and then present our recommendations for future work.

Kyoungwoo Heo.  2014.  An Accumulated Loss Recovery Algorithm on Overlay Multicast System Using Fountain Codes. Information Science and Applications (ICISA), 2014 International Conference on. :1-3.

In this paper, we propose an accumulated loss recovery algorithm on overlay multicast system using Fountain codes. Fountain code successfully decodes the packet loss, but it is weak in accumulated losses on multicast tree. The proposed algorithm overcomes an accumulated loss and significantly reduces delay on overlay multicast tree.

Uemura, Toshiaki, Kashiwabara, Yuta, Kawanuma, Daiki, Tomii, Takashi.  2016.  Accuracy Evaluation by GPS Data Correction for the EV Energy Consumption Database. Adjunct Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing Networking and Services. :213–218.
Electric vehicles (EVs) are expected to be applicable to smart grids because they have large-capacity batteries. It is important that smart grid users be able to estimate surplus battery energy and/or surplus capacity in advance of deploying EVs. We constructed a database, the Energy COnsumption LOG (ECOLOG) Database System, to store vehicle daily logs acquired by smartphones placed in vehicles. The electrical energy consumption is estimated from GPS coordinate data using an EV energy-consumption model. This research specifically examines commuting with a vehicle used for same route every day. We corrected GPS coordinate data by map matching, and input the data to the EV energy consumption model. We regard the remaining battery capacity data acquired by the EV CAN as correct data. Then we evaluate the accuracy of driving energy consumption logs as estimated using the corrected GPS coordinate data.
Khadka, A., Argyriou, V., Remagnino, P..  2020.  Accurate Deep Net Crowd Counting for Smart IoT Video acquisition devices. 2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS). :260—264.

A novel deep neural network is proposed, for accurate and robust crowd counting. Crowd counting is a complex task, as it strongly depends on the deployed camera characteristics and, above all, the scene perspective. Crowd counting is essential in security applications where Internet of Things (IoT) cameras are deployed to help with crowd management tasks. The complexity of a scene varies greatly, and a medium to large scale security system based on IoT cameras must cater for changes in perspective and how people appear from different vantage points. To address this, our deep architecture extracts multi-scale features with a pyramid contextual module to provide long-range contextual information and enlarge the receptive field. Experiments were run on three major crowd counting datasets, to test our proposed method. Results demonstrate our method supersedes the performance of state-of-the-art methods.

Dong, Qiuxiang, Huang, Dijiang, Luo, Jim, Kang, Myong.  2018.  Achieving Fine-Grained Access Control with Discretionary User Revocation over Cloud Data. 2018 IEEE Conference on Communications and Network Security (CNS). :1—9.
Cloud storage solutions have gained momentum in recent years. However, cloud servers can not be fully trusted. Data access control have becomes one of the main impediments for further adoption. One appealing approach is to incorporate the access control into encrypted data, thus removing the need to trust the cloud servers. Among existing cryptographic solutions, Ciphertext Policy Attribute-Based Encryption (CP-ABE) is well suited for fine-grained data access control in cloud storage. As promising as it is, user revocation is a cumbersome problem that impedes its wide application. To address this issue, we design an access control system called DUR-CP-ABE, which implements identity-based User Revocation in a data owner Discretionary way. In short, the proposed solution provides the following salient features. First, user revocation enforcement is based on the discretion of the data owner, thus providing more flexibility. Second, no private key updates are needed when user revocation occurs. Third, the proposed scheme allows for group revocation of affiliated users in a batch operation. To the best of our knowledge, DUR-CP-ABE is the first CP-ABE solution to provide affiliation- based batch revocation functionality, which fits naturally into organizations' Identity and Access Management (IAM) structure. The analysis shows that the proposed access control system is provably secure and efficient in terms of computation, communi- cation and storage.
Green, Benjamin, Krotofil, Marina, Hutchison, David.  2016.  Achieving ICS Resilience and Security Through Granular Data Flow Management. Proceedings of the 2Nd ACM Workshop on Cyber-Physical Systems Security and Privacy. :93–101.

Modern Industrial Control Systems (ICS) rely on enterprise to plant floor connectivity. Where the size, diversity, and therefore complexity of ICS increase, operational requirements, goals, and challenges defined by users across various sub-systems follow. Recent trends in Information Technology (IT) and Operational Technology (OT) convergence may cause operators to lose a comprehensive understanding of end-to-end data flow requirements. This presents a risk to system security and resilience. Sensors were once solely applied for operational process use, but now act as inputs supporting a diverse set of organisational requirements. If these are not fully understood, incomplete risk assessment, and inappropriate implementation of security controls could occur. In search of a solution, operators may turn to standards and guidelines. This paper reviews popular standards and guidelines, prior to the presentation of a case study and conceptual tool, highlighting the importance of data flows, critical data processing points, and system-to-user relationships. The proposed approach forms a basis for risk assessment and security control implementation, aiding the evolution of ICS security and resilience.

Burley, Diana, Bishop, Matt, Kaza, Siddharth, Gibson, David S., Hawthorne, Elizabeth, Buck, Scott.  2017.  ACM Joint Task Force on Cybersecurity Education. Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education. :683–684.
In this special session, members of the ACM Joint Task Force (JTF) on Cybersecurity Education will provide an overview of the task force mission, objectives, and release a draft of the curricular guidelines. After the overview, task force members will engage session participants in the curricular development process and solicit feedback on the draft guidelines.
Kimmich, J. M., Schlesinger, A., Tschaikner, M., Ochmann, M., Frank, S..  2018.  Acoustical Analysis of Coupled Rooms Applied to the Deutsche Oper Berlin. 2018 Joint Conference - Acoustics. :1–9.
The aim of the project SIMOPERA is to simulate and optimize the acoustics in large and complex rooms, with special focus on the Deutsche Oper Berlin as an example of application. Firstly, characteristic subspaces of the opera are considered such as the orchestra pit, the stage and the auditorium. Special attention is paid to the orchestra pit, where high sound pressure levels can occur, leading to noise related risks for the musicians. However, lowering the sound pressure level in the orchestra pit should not violate other objectives as the propagation of sound into the auditorium, the balance between the stage performers and the orchestra across the hall, and the mutual audibility between performers and orchestra members. For that reason, a hybrid simulation method consisting of the wave-based Finite Element Method (FEM) and the Boundary Element Method (BEM) for low frequencies and geometrical methods like the mirror source method and ray tracing for higher frequencies is developed in order to determine the relevant room acoustic quantities such as impulse response functions, reverberation time, clarity, center time etc. Measurements in the opera will continuously accompany the numerical calculations. Finally, selected constructive means for reducing the sound level in the orchestra pit will be analyzed.
Schulz, A., Kotson, M., Meiners, C., Meunier, T., O’Gwynn, D., Trepagnier, P., Weller-Fahy, D..  2017.  Active Dependency Mapping: A Data-Driven Approach to Mapping Dependencies in Distributed Systems. 2017 IEEE International Conference on Information Reuse and Integration (IRI). :84–91.

We introduce Active Dependency Mapping (ADM), a method for establishing dependency relations among a set of interdependent services. The approach is to artificially degrade network performance to infer which assets on the network support a particular process. Artificial degradation of the network environment could be transparent to users; run continuously it could identify dependencies that are rare or occur only at certain timescales. A useful byproduct of this dependency analysis is a quantitative assessment of the resilience and robustness of the system. This technique is intriguing for hardening both enterprise networks and cyber physical systems. We present a proof-of-concept experiment executed on a real-world set of interrelated software services. We assess the efficacy of the approach, discuss current limitations, and suggest options for future development of ADM.

Krishnan, Sanjay, Franklin, Michael J., Goldberg, Ken, Wang, Jiannan, Wu, Eugene.  2016.  ActiveClean: An Interactive Data Cleaning Framework For Modern Machine Learning. Proceedings of the 2016 International Conference on Management of Data. :2117–2120.

Databases can be corrupted with various errors such as missing, incorrect, or inconsistent values. Increasingly, modern data analysis pipelines involve Machine Learning, and the effects of dirty data can be difficult to debug.Dirty data is often sparse, and naive sampling solutions are not suited for high-dimensional models. We propose ActiveClean, a progressive framework for training Machine Learning models with data cleaning. Our framework updates a model iteratively as the analyst cleans small batches of data, and includes numerous optimizations such as importance weighting and dirty data detection. We designed a visual interface to wrap around this framework and demonstrate ActiveClean for a video classification problem and a topic modeling problem.

Livshitz, Ilva I., Lontsikh, Pawel A., Lontsiklr, Natalia P., Karascv, Sergey, Golovina, Elena.  2019.  The Actual Problems of IT-Security Process Assurance. 2019 International Conference "Quality Management, Transport and Information Security, Information Technologies" (IT QM IS). :140–144.

The article deals with the aspects of IT-security of business processes, using a variety of methodological tools, including Integrated Management Systems. Currently, all IMS consist of at least 2 management systems, including the IT-Security Management System. Typically, these IMS cover biggest part of the company business processes, but in practice, there are examples of different scales, even within a single facility. However, it should be recognized that the total number of such projects both in the Russian Federation and in the World is small. The security of business processes will be considered on the example of the incident of Norsk Hydro. In the article the main conclusions are given to confirm the possibility of security, continuity and recovery of critical business processes on the example of this incident.

C. H. Hsieh, C. M. Lai, C. H. Mao, T. C. Kao, K. C. Lee.  2015.  "AD2: Anomaly detection on active directory log data for insider threat monitoring". 2015 International Carnahan Conference on Security Technology (ICCST). :287-292.

What you see is not definitely believable is not a rare case in the cyber security monitoring. However, due to various tricks of camouflages, such as packing or virutal private network (VPN), detecting "advanced persistent threat"(APT) by only signature based malware detection system becomes more and more intractable. On the other hand, by carefully modeling users' subsequent behaviors of daily routines, probability for one account to generate certain operations can be estimated and used in anomaly detection. To the best of our knowledge so far, a novel behavioral analytic framework, which is dedicated to analyze Active Directory domain service logs and to monitor potential inside threat, is now first proposed in this project. Experiments on real dataset not only show that the proposed idea indeed explores a new feasible direction for cyber security monitoring, but also gives a guideline on how to deploy this framework to various environments.

Yagoub, Mohammed Amine, Laouid, Abdelkader, Kazar, Okba, Bounceur, Ahcène, Euler, Reinhardt, AlShaikh, Muath.  2018.  An Adaptive and Efficient Fully Homomorphic Encryption Technique. Proceedings of the 2Nd International Conference on Future Networks and Distributed Systems. :35:1–35:6.

The huge amount of generated data offers special advantages mainly in dynamic and scalable systems. In fact, the data generator entities need to share the generated data with each other which leads to the use of cloud services. A cloud server is considered as an untrusted entity that offers many advantages such as large storing space, computation speed... etc. Hence, there is a need to cope with how to protect the stored data in the cloud server by proposing adaptive solutions. The main objective is how to provide an encryption scheme allowing the user to maintains some functions such as addition, multiplication and to preserve the order on the encrypted cloud data. Many algorithms and techniques are designed to manipulate the stored encrypted cloud data. This paper presents an adaptive and efficient fully homomorphic encryption technique to protect the user's data stored in the cloud, where the cloud server executes simple operations.

Renners, Leonard, Heine, Felix, Kleiner, Carsten, Rodosek, Gabi Dreo.  2019.  Adaptive and Intelligible Prioritization for Network Security Incidents. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–8.
Incident prioritization is nowadays a part of many approaches and tools for network security and risk management. However, the dynamic nature of the problem domain is often unaccounted for. That is, the prioritization is typically based on a set of static calculations, which are rarely adjusted. As a result, incidents are incorrectly prioritized, leading to an increased and misplaced effort in the incident response. A higher degree of automation could help to address this problem. In this paper, we explicitly consider flaws in the prioritization an unalterable circumstance. We propose an adaptive incident prioritization, which allows to automate certain tasks for the prioritization model management in order to continuously assess and improve a prioritization model. At the same time, we acknowledge the human analyst as the focal point and propose to keep the human in the loop, among others by treating understandability as a crucial requirement.
Kulikov, G. V., Tien, D. T., Kulagin, V. P..  2020.  Adaptive filtering of non-fluctuation interference when receiving signals with multi-position phase shift keying. 2020 Moscow Workshop on Electronic and Networking Technologies (MWENT). :1—4.

{The paper considers the efficiency of an adaptive non-recursive filter using the adjustment algorithm for weighting coefficients taking into account the constant envelope of the desired signal when receiving signals with multi-position phase shift keying against the background of noise and non-fluctuation interference. Two types of such interference are considered - harmonic and retranslated. The optimal filter parameters (adaptation coefficient and length) are determined by using simulation; the effect of the filter on the noise immunity of a quadrature coherent signal receiver with multi-position phase shift keying for different combinations of interference and their intensity is estimated. It is shown that such an adaptive filter can successfully deal with the most dangerous sighting harmonic interference}.

Karras, Panagiotis, Nikitin, Artyom, Saad, Muhammad, Bhatt, Rudrika, Antyukhov, Denis, Idreos, Stratos.  2016.  Adaptive Indexing over Encrypted Numeric Data. Proceedings of the 2016 International Conference on Management of Data. :171–183.

Today, outsourcing query processing tasks to remote cloud servers becomes a viable option; such outsourcing calls for encrypting data stored at the server so as to render it secure against eavesdropping adversaries and/or an honest-but-curious server itself. At the same time, to be efficiently managed, outsourced data should be indexed, and even adaptively so, as a side-effect of query processing. Computationally heavy encryption schemes render such outsourcing unattractive; an alternative, Order-Preserving Encryption Scheme (OPES), intentionally preserves and reveals the order in the data, hence is unattractive from the security viewpoint. In this paper, we propose and analyze a scheme for lightweight and indexable encryption, based on linear-algebra operations. Our scheme provides higher security than OPES and allows for range and point queries to be efficiently evaluated over encrypted numeric data, with decryption performed at the client side. We implement a prototype that performs incremental, query-triggered adaptive indexing over encrypted numeric data based on this scheme, without leaking order information in advance, and without prohibitive overhead, as our extensive experimental study demonstrates.

Wang, Z., Wang, Y., Dong, B., Pracheta, S., Hamlen, K., Khan, L..  2020.  Adaptive Margin Based Deep Adversarial Metric Learning. 2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :100—108.

In the past decades, learning an effective distance metric between pairs of instances has played an important role in the classification and retrieval task, for example, the person identification or malware retrieval in the IoT service. The core motivation of recent efforts focus on improving the metric forms, and already showed promising results on the various applications. However, such models often fail to produce a reliable metric on the ambiguous test set. It happens mainly due to the sampling process of the training set, which is not representative of the distribution of the negative samples, especially the examples that are closer to the boundary of different categories (also called hard negative samples). In this paper, we focus on addressing such problems and propose an adaptive margin deep adversarial metric learning (AMDAML) framework. It exploits numerous common negative samples to generate potential hard (adversarial) negatives and applies them to facilitate robust metric learning. Apart from the previous approaches that typically depend on the search or data augmentation to find hard negative samples, the generation of adversarial negative instances could avoid the limitation of domain knowledge and constraint pairs' amount. Specifically, in order to prevent over fitting or underfitting during the training step, we propose an adaptive margin loss that preserves a flexible margin between the negative (include the adversarial and original) and positive samples. We simultaneously train both the adversarial negative generator and conventional metric objective in an adversarial manner and learn the feature representations that are more precise and robust. The experimental results on practical data sets clearly demonstrate the superiority of AMDAML to representative state-of-the-art metric learning models.

Kakanakov, N., Shopov, M..  2017.  Adaptive models for security and data protection in IoT with Cloud technologies. 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). :1001–1004.

The paper presents an example Sensor-cloud architecture that integrates security as its native ingredient. It is based on the multi-layer client-server model with separation of physical and virtual instances of sensors, gateways, application servers and data storage. It proposes the application of virtualised sensor nodes as a prerequisite for increasing security, privacy, reliability and data protection. All main concerns in Sensor-Cloud security are addressed: from secure association, authentication and authorization to privacy and data integrity and protection. The main concept is that securing the virtual instances is easier to implement, manage and audit and the only bottleneck is the physical interaction between real sensor and its virtual reflection.

Perner, Cora, Kinkelin, Holger, Carle, Georg.  2019.  Adaptive Network Management for Safety-Critical Systems. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :25–30.
Present networks within safety-critical systems rely on complex and inflexible network configurations. New technologies such as software-defined networking are more dynamic and offer more flexibility, but due care needs to be exercised to ensure that safety and security are not compromised by incorrect configurations. To this end, this paper proposes the use of pre-generated and optimized configuration templates. These provide alternate routes for traffic considering availability, resilience and timing constraints where network components fail due to attacks or faults.To obtain these templates, two heuristics based on Dijkstra's algorithm and an optimization algorithm providing the maximum resilience were investigated. While the configurations obtained through optimization yield appropriate templates, the heuristics investigated are not suitable to obtain configuration templates, since they cannot fulfill all requirements.
Kin-Cleaves, Christy, Ker, Andrew D..  2018.  Adaptive Steganography in the Noisy Channel with Dual-Syndrome Trellis Codes. 2018 IEEE International Workshop on Information Forensics and Security (WIFS). :1–7.
Adaptive steganography aims to reduce distortion in the embedding process, typically using Syndrome Trellis Codes (STCs). However, in the case of non-adversarial noise, these are a bad choice: syndrome codes are fragile by design, amplifying the channel error rate into unacceptably-high payload error rates. In this paper we examine the fragility of STCs in the noisy channel, and consider how this can be mitigated if their use cannot be avoided altogether. We also propose an extension called Dual-Syndrome Trellis Codes, that combines error correction and embedding in the same Viterbi process, which slightly outperforms a straight-forward combination of standard forward error correction and STCs.