Visible to the public Biblio

Found 2299 results

Filters: First Letter Of Last Name is K  [Clear All Filters]
Conference Paper
Lee, Kyungroul, Yeuk, Hyeungjun, Yim, Kangbin, Kim, Suhyun.  2016.  Analysis on Manipulation of the MAC Address and Consequent Security Threats. Proceedings of the 8th ACM CCS International Workshop on Managing Insider Security Threats. :113–117.

In this paper, we analyze manipulation methods of the MAC address and consequent security threats. The Ethernet MAC address is known to be unchanged, and so is highly considered as platform-unique information. For this reason, various services are researched using the MAC address. These kinds of services are organized with MAC address as plat- form identifier or a password, and such a diverse range of security threats are caused when the MAC address is manipulated. Therefore, here we research on manipulation methods for MAC address at different levels on a computing platform and highlight the security threats resulted from modification of the MAC address. In this paper, we introduce manipulation methods on the original MAC address stored in the EEPROM on NIC (Network Interface Card) as hardware- based MAC spoofing attack, which are unknown to be general approaches. This means that the related services should struggle to detect the falsification and the results of this paper have deep significance in most MAC address-based services.

Singh, M., Singh, P., Kumar, P..  2020.  An Analytical Study on Cross-Site Scripting. 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA). :1—6.
Cross-Site Scripting, also called as XSS, is a type of injection where malicious scripts are injected into trusted websites. When malicious code, usually in the form of browser side script, is injected using a web application to a different end user, an XSS attack is said to have taken place. Flaws which allows success to this attack is remarkably widespread and occurs anywhere a web application handles the user input without validating or encoding it. A study carried out by Symantic states that more than 50% of the websites are vulnerable to the XSS attack. Security engineers of Microsoft coined the term "Cross-Site Scripting" in January of the year 2000. But even if was coined in the year 2000, XSS vulnerabilities have been reported and exploited since the beginning of 1990's, whose prey have been all the (then) tech-giants such as Twitter, Myspace, Orkut, Facebook and YouTube. Hence the name "Cross-Site" Scripting. This attack could be combined with other attacks such as phishing attack to make it more lethal but it usually isn't necessary, since it is already extremely difficult to deal with from a user perspective because in many cases it looks very legitimate as it's leveraging attacks against our banks, our shopping websites and not some fake malicious website.
Kelkar, S., Kraus, T., Morgan, D., Zhang, J., Dai, R..  2018.  Analyzing HTTP-Based Information Exfiltration of Malicious Android Applications. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1642-1645.

Exfiltrating sensitive information from smartphones has become one of the most significant security threats. We have built a system to identify HTTP-based information exfiltration of malicious Android applications. In this paper, we discuss the method to track the propagation of sensitive information in Android applications using static taint analysis. We have studied the leaked information, destinations to which information is exfiltrated, and their correlations with types of sensitive information. The analysis results based on 578 malicious Android applications have revealed that a significant portion of these applications are interested in identity-related sensitive information. The vast majority of malicious applications leak multiple types of sensitive information. We have also identified servers associated with three country codes including CN, US, and SG are most active in collecting sensitive information. The analysis results have also demonstrated that a wide range of non-default ports are used by suspicious URLs.

Korman, Matus, Välja, Margus, Björkman, Gunnar, Ekstedt, Mathias, Vernotte, Alexandre, Lagerström, Robert.  2017.  Analyzing the Effectiveness of Attack Countermeasures in a SCADA System. Proceedings of the 2Nd Workshop on Cyber-Physical Security and Resilience in Smart Grids. :73–78.

The SCADA infrastructure is a key component for power grid operations. Securing the SCADA infrastructure against cyber intrusions is thus vital for a well-functioning power grid. However, the task remains a particular challenge, not the least since not all available security mechanisms are easily deployable in these reliability-critical and complex, multi-vendor environments that host modern systems alongside legacy ones, to support a range of sensitive power grid operations. This paper examines how effective a few countermeasures are likely to be in SCADA environments, including those that are commonly considered out of bounds. The results show that granular network segmentation is a particularly effective countermeasure, followed by frequent patching of systems (which is unfortunately still difficult to date). The results also show that the enforcement of a password policy and restrictive network configuration including whitelisting of devices contributes to increased security, though best in combination with granular network segmentation.

Potdar, M.S., Manekar, A.S., Kadu, R.D..  2014.  Android #x0022;Health-Dr. #x0022; Application for Synchronous Information Sharing. Communication Systems and Network Technologies (CSNT), 2014 Fourth International Conference on. :265-269.

Android "Health-DR." is innovative idea for ambulatory appliances. In rapid developing technology, we are providing "Health-DR." application for the insurance agent, dispensary, patients, physician, annals management (security) for annals. So principally, the ample of record are maintain in to the hospitals. The application just needs to be installed in the customer site with IT environment. Main purpose of our application is to provide the healthy environment to the patient. Our cream focus is on the "Health-DR." application meet to the patient regiment. For the personal use of member, we provide authentication service strategy for "Health-DR." application. Prospective strategy includes: Professional Authentications (User Authentication) by doctor to the patient, actuary and dispensary. Remote access is available to the medical annals, doctor affability and patient affability. "Health-DR." provides expertness anytime and anywhere. The application is middleware to isolate the information from affability management, client discovery and transit of database. Annotations of records are kept in the bibliography. Mainly, this paper focuses on the conversion of E-Health application with flexible surroundings.
 

Kim, H. M., Song, H. M., Seo, J. W., Kim, H. K..  2018.  Andro-Simnet: Android Malware Family Classification Using Social Network Analysis. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1-8.

While the rapid adaptation of mobile devices changes our daily life more conveniently, the threat derived from malware is also increased. There are lots of research to detect malware to protect mobile devices, but most of them adopt only signature-based malware detection method that can be easily bypassed by polymorphic and metamorphic malware. To detect malware and its variants, it is essential to adopt behavior-based detection for efficient malware classification. This paper presents a system that classifies malware by using common behavioral characteristics along with malware families. We measure the similarity between malware families with carefully chosen features commonly appeared in the same family. With the proposed similarity measure, we can classify malware by malware's attack behavior pattern and tactical characteristics. Also, we apply community detection algorithm to increase the modularity within each malware family network aggregation. To maintain high classification accuracy, we propose a process to derive the optimal weights of the selected features in the proposed similarity measure. During this process, we find out which features are significant for representing the similarity between malware samples. Finally, we provide an intuitive graph visualization of malware samples which is helpful to understand the distribution and likeness of the malware networks. In the experiment, the proposed system achieved 97% accuracy for malware classification and 95% accuracy for prediction by K-fold cross-validation using the real malware dataset.

Arifeen, Md Murshedul, Islam, Al Amin, Rahman, Md Mustafizur, Taher, Kazi Abu, Islam, Md.Maynul, Kaiser, M Shamim.  2019.  ANFIS based Trust Management Model to Enhance Location Privacy in Underwater Wireless Sensor Networks. 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE). :1–6.
Trust management is a promising alternative solution to different complex security algorithms for Underwater Wireless Sensor Networks (UWSN) applications due to its several resource constraint behaviour. In this work, we have proposed a trust management model to improve location privacy of the UWSN. Adaptive Neuro Fuzzy Inference System (ANFIS) has been exploited to evaluate trustworthiness of a sensor node. Also Markov Decision Process (MDP) has been considered. At each state of the MDP, a sensor node evaluates trust behaviour of forwarding node utilizing the FIS learning rules and selects a trusted node. Simulation has been conducted in MATLAB and simulation results show that the detection accuracy of trustworthiness is 91.2% which is greater than Knowledge Discovery and Data Mining (KDD) 99 intrusion detection based dataset. So, in our model 91.2% trustworthiness is necessary to be a trusted node otherwise it will be treated as a malicious or compromised node. Our proposed model can successfully eliminate the possibility of occurring any compromised or malicious node in the network.
Koda, S., Kambara, Y., Oikawa, T., Furukawa, K., Unno, Y., Murakami, M..  2020.  Anomalous IP Address Detection on Traffic Logs Using Novel Word Embedding. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :1504–1509.
This paper presents an anomalous IP address detection algorithm for network traffic logs. It is based on word embedding techniques derived from natural language processing to extract the representative features of IP addresses. However, the features extracted from vanilla word embeddings are not always compatible with machine learning-based anomaly detection algorithms. Therefore, we developed an algorithm that enables the extraction of more compatible features of IP addresses for anomaly detection than conventional methods. The proposed algorithm optimizes the objective functions of word embedding-based feature extraction and anomaly detection, simultaneously. According to the experimental results, the proposed algorithm outperformed conventional approaches; it improved the detection performance from 0.876 to 0.990 in the area under the curve criterion in a task of detecting the IP addresses of attackers from network traffic logs.
Jia, Guanbo, Miller, Paul, Hong, Xin, Kalutarage, Harsha, Ban, Tao.  2019.  Anomaly Detection in Network Traffic Using Dynamic Graph Mining with a Sparse Autoencoder. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :458—465.

Network based attacks on ecommerce websites can have serious economic consequences. Hence, anomaly detection in dynamic network traffic has become an increasingly important research topic in recent years. This paper proposes a novel dynamic Graph and sparse Autoencoder based Anomaly Detection algorithm named GAAD. In GAAD, the network traffic over contiguous time intervals is first modelled as a series of dynamic bipartite graph increments. One mode projection is performed on each bipartite graph increment and the adjacency matrix derived. Columns of the resultant adjacency matrix are then used to train a sparse autoencoder to reconstruct it. The sum of squared errors between the reconstructed approximation and original adjacency matrix is then calculated. An online learning algorithm is then used to estimate a Gaussian distribution that models the error distribution. Outlier error values are deemed to represent anomalous traffic flows corresponding to possible attacks. In the experiment, a network emulator was used to generate representative ecommerce traffic flows over a time period of 225 minutes with five attacks injected, including SYN scans, host emulation and DDoS attacks. ROC curves were generated to investigate the influence of the autoencoder hyper-parameters. It was found that increasing the number of hidden nodes and their activation level, and increasing sparseness resulted in improved performance. Analysis showed that the sparse autoencoder was unable to encode the highly structured adjacency matrix structures associated with attacks, hence they were detected as anomalies. In contrast, SVD and variants, such as the compact matrix decomposition, were found to accurately encode the attack matrices, hence they went undetected.

Kreimel, Philipp, Eigner, Oliver, Tavolato, Paul.  2017.  Anomaly-Based Detection and Classification of Attacks in Cyber-Physical Systems. Proceedings of the 12th International Conference on Availability, Reliability and Security. :40:1–40:6.

Cyber-physical systems are found in industrial and production systems, as well as critical infrastructures. Due to the increasing integration of IP-based technology and standard computing devices, the threat of cyber-attacks on cyber-physical systems has vastly increased. Furthermore, traditional intrusion defense strategies for IT systems are often not applicable in operational environments. In this paper we present an anomaly-based approach for detection and classification of attacks in cyber-physical systems. To test our approach, we set up a test environment with sensors, actuators and controllers widely used in industry, thus, providing system data as close as possible to reality. First, anomaly detection is used to define a model of normal system behavior by calculating outlier scores from normal system operations. This valid behavior model is then compared with new data in order to detect anomalies. Further, we trained an attack model, based on supervised attacks against the test setup, using the naive Bayes classifier. If an anomaly is detected, the classification process tries to classify the anomaly by applying the attack model and calculating prediction confidences for trained classes. To evaluate the statistical performance of our approach, we tested the model by applying an unlabeled dataset, which contains valid and anomalous data. The results show that this approach was able to detect and classify such attacks with satisfactory accuracy.

Das, D., Meiser, S., Mohammadi, E., Kate, A..  2018.  Anonymity Trilemma: Strong Anonymity, Low Bandwidth Overhead, Low Latency - Choose Two. 2018 IEEE Symposium on Security and Privacy (SP). :108–126.

This work investigates the fundamental constraints of anonymous communication (AC) protocols. We analyze the relationship between bandwidth overhead, latency overhead, and sender anonymity or recipient anonymity against the global passive (network-level) adversary. We confirm the trilemma that an AC protocol can only achieve two out of the following three properties: strong anonymity (i.e., anonymity up to a negligible chance), low bandwidth overhead, and low latency overhead. We further study anonymity against a stronger global passive adversary that can additionally passively compromise some of the AC protocol nodes. For a given number of compromised nodes, we derive necessary constraints between bandwidth and latency overhead whose violation make it impossible for an AC protocol to achieve strong anonymity. We analyze prominent AC protocols from the literature and depict to which extent those satisfy our necessary constraints. Our fundamental necessary constraints offer a guideline not only for improving existing AC systems but also for designing novel AC protocols with non-traditional bandwidth and latency overhead choices.

Rahman, S.M.M., Kamruzzaman, S.M., Almogren, A., Alelaiwi, A., Alamri, A., Alghamdi, A..  2014.  Anonymous and Secure Communication Protocol for Cognitive Radio Ad Hoc Networks. Multimedia (ISM), 2014 IEEE International Symposium on. :393-398.

Cognitive radio (CR) networks are becoming an increasingly important part of the wireless networking landscape due to the ever-increasing scarcity of spectrum resources throughout the world. Nowadays CR media is becoming popular wireless communication media for disaster recovery communication network. Although the operational aspects of CR are being explored vigorously, its security aspects have gained less attention to the research community. The existing research on CR network mainly focuses on the spectrum sensing and allocation, energy efficiency, high throughput, end-to-end delay and other aspect of the network technology. But, very few focuses on the security aspect and almost none focus on the secure anonymous communication in CR networks (CRNs). In this research article we would focus on secure anonymous communication in CR ad hoc networks (CRANs). We would propose a secure anonymous routing for CRANs based on pairing based cryptography which would provide source node, destination node and the location anonymity. Furthermore, the proposed research would protect different attacks those are feasible on CRANs.

Fan, Chun-I, Tseng, Yi-Fan, Cheng, Chen-Hsi, Kuo, Hsin-Nan, Huang, Jheng-Jia, Shih, Yu-Tse.  2019.  Anonymous Authentication and Key Agreement Protocol for LTE Networks. 2019 2nd International Conference on Communication Engineering and Technology (ICCET). :68—71.
In 2008, 3GPP proposed the Long Term Evolution (LTE) in version 8. The standard is used in high-speed wireless communication standard for mobile terminal in telecommunication. It supports subscribers to access internet via specific base station after authentication. These authentication processes were defined in standard TS33.401 and TS33.102 by 3GPP. Authenticated processing standard inherits the authentication and key agreement protocol in RFC3310 and has been changed into authenticated scheme suitable for LTE. In the origin LTE authenticated scheme, subscribers need to transfer its International Mobile Subscriber Identity (IMSI) with plaintext. The IMSI might be intercepted and traced by fake stations. In this work, we propose a new scheme with a pseudo IMSI so that fake stations cannot get the real IMSI and trace the subscriber. The subscriber can keep anonymous and be confirmed by the base station for the legality. The pseudo identity is unlinkable to the subscriber. Not only does the proposed scheme enhance the security but also it just has some extra costs for signature generation and verification as compared to the original scheme.
Will, M. A., Ko, R. K. L., Schlickmann, S. J..  2017.  Anonymous Data Sharing Between Organisations with Elliptic Curve Cryptography. 2017 IEEE Trustcom/BigDataSE/ICESS. :1024–1031.

Promoting data sharing between organisations is challenging, without the added concerns over having actions traced. Even with encrypted search capabilities, the entities digital location and downloaded information can be traced, leaking information to the hosting organisation. This is a problem for law enforcement and government agencies, where any information leakage is not acceptable, especially for investigations. Anonymous routing is a technique to stop a host learning which agency is accessing information. Many related works for anonymous routing have been proposed, but are designed for Internet traffic, and are over complicated for internal usage. A streaming design for circuit creation is proposed using elliptic curve cryptography. Allowing for a simple anonymous routing solution, which provides fast performance with source and destination anonymity to other organisations.

Al-Odat, Zeyad A., Khan, Samee U..  2019.  Anonymous Privacy-Preserving Scheme for Big Data Over the Cloud. 2019 IEEE International Conference on Big Data (Big Data). :5711–5717.
This paper introduces an anonymous privacy-preserving scheme for big data over the cloud. The proposed design helps to enhance the encryption/decryption time of big data by utilizing the MapReduce framework. The Hadoop distributed file system and the secure hash algorithm are employed to provide the anonymity, security and efficiency requirements for the proposed scheme. The experimental results show a significant enhancement in the computational time of data encryption and decryption.
Bender, Michael A., Berry, Jonathan W., Johnson, Rob, Kroeger, Thomas M., McCauley, Samuel, Phillips, Cynthia A., Simon, Bertrand, Singh, Shikha, Zage, David.  2016.  Anti-Persistence on Persistent Storage: History-Independent Sparse Tables and Dictionaries. Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. :289–302.

We present history-independent alternatives to a B-tree, the primary indexing data structure used in databases. A data structure is history independent (HI) if it is impossible to deduce any information by examining the bit representation of the data structure that is not already available through the API. We show how to build a history-independent cache-oblivious B-tree and a history-independent external-memory skip list. One of the main contributions is a data structure we build on the way–-a history-independent packed-memory array (PMA). The PMA supports efficient range queries, one of the most important operations for answering database queries. Our HI PMA matches the asymptotic bounds of prior non-HI packed-memory arrays and sparse tables. Specifically, a PMA maintains a dynamic set of elements in sorted order in a linear-sized array. Inserts and deletes take an amortized O(log2 N) element moves with high probability. Simple experiments with our implementation of HI PMAs corroborate our theoretical analysis. Comparisons to regular PMAs give preliminary indications that the practical cost of adding history-independence is not too large. Our HI cache-oblivious B-tree bounds match those of prior non-HI cache-oblivious B-trees. Searches take O(logB N) I/Os; inserts and deletes take O((log2 N)/B+ logB N) amortized I/Os with high probability; and range queries returning k elements take O(logB N + k/B) I/Os. Our HI external-memory skip list achieves optimal bounds with high probability, analogous to in-memory skip lists: O(logB N) I/Os for point queries and amortized O(logB N) I/Os for inserts/deletes. Range queries returning k elements run in O(logB N + k/B) I/Os. In contrast, the best possible high-probability bounds for inserting into the folklore B-skip list, which promotes elements with probability 1/B, is just Theta(log N) I/Os. This is no better than the bounds one gets from running an in-memory skip list in external memory.

Dhanush, V., Mahendra, A. R., Kumudavalli, M. V., Samanta, D..  2017.  Application of Deep Learning Technique for Automatic Data Exchange with Air-Gapped Systems and Its Security Concerns. 2017 International Conference on Computing Methodologies and Communication (ICCMC). :324–328.

Many a time's assumptions are key to inventions. One such notion in recent past is about data exchange between two disjoint computer systems. It is always assumed that, if any two computers are separated physically without any inter communication, it is considered to be very secure and will not be compromised, the exchange of data between them would be impossible. But recent growth in the field of computers emphasizes the requirements of security analysis. One such security concern is with the air-gapped systems. This paper deals with the flaws and flow of air-gapped systems.

Ghosh, Debanjana, Chatterjee, Soumyajit, Kothari, Vasudha, Kumar, Aakash, Nair, Mahesh, Lokesh, Ella.  2019.  An application of Li-Fi based Wireless Communication System using Visible Light Communication. 2019 International Conference on Opto-Electronics and Applied Optics (Optronix). :1–3.
This paper attempts to clarify the concept and applications of Li-Fi technology. The current Wi-Fi network use Radio Frequency waves, but the usage of the available RF spectrum is limited. Therefore a new technology, Li-Fi has come into picture. Li-Fi is a recently developed technology. This paper explains how array of LEDs are used to transmit data in the visible light spectrum. This technology has advantages like security, increased accessible spectrum, low latency efficiency and much higher speed as compared to Wi- Fi. The aim of this research paper is to design a Li-Fi transceiver using Arduino which is able to transmit and receive data in binary format. The software coding is done in Arduino- Uno platform. Successful transmission and reception of data(alphanumeric) has been done.
Sheth, Utsav, Dutta, Sanghamitra, Chaudhari, Malhar, Jeong, Haewon, Yang, Yaoqing, Kohonen, Jukka, Roos, Teemu, Grover, Pulkit.  2018.  An Application of Storage-Optimal MatDot Codes for Coded Matrix Multiplication: Fast k-Nearest Neighbors Estimation. 2018 IEEE International Conference on Big Data (Big Data). :1113—1120.
We propose a novel application of coded computing to the problem of the nearest neighbor estimation using MatDot Codes (Fahim et al., Allerton'17) that are known to be optimal for matrix multiplication in terms of recovery threshold under storage constraints. In approximate nearest neighbor algorithms, it is common to construct efficient in-memory indexes to improve query response time. One such strategy is Multiple Random Projection Trees (MRPT), which reduces the set of candidate points over which Euclidean distance calculations are performed. However, this may result in a high memory footprint and possibly paging penalties for large or high-dimensional data. Here we propose two techniques to parallelize MRPT that exploit data and model parallelism respectively by dividing both the data storage and the computation efforts among different nodes in a distributed computing cluster. This is especially critical when a single compute node cannot hold the complete dataset in memory. We also propose a novel coded computation strategy based on MatDot codes for the model-parallel architecture that, in a straggler-prone environment, achieves the storage-optimal recovery threshold, i.e., the number of nodes that are required to serve a query. We experimentally demonstrate that, in the absence of straggling, our distributed approaches require less query time than execution on a single processing node, providing near-linear speedups with respect to the number of worker nodes. Our experiments on real systems with simulated straggling, we also show that in a straggler-prone environment, our strategy achieves a faster query execution than the uncoded strategy.
Karimov, Madjit, Tashev, Komil, Rustamova, Sanobar.  2020.  Application of the Aho-Corasick algorithm to create a network intrusion detection system. 2020 International Conference on Information Science and Communications Technologies (ICISCT). :1—5.
One of the main goals of studying pattern matching techniques is their significant role in real-world applications, such as the intrusion detection systems branch. The purpose of the network attack detection systems NIDS is to protect the infocommunication network from unauthorized access. This article provides an analysis of the exact match and fuzzy matching methods, and discusses a new implementation of the classic Aho-Korasik pattern matching algorithm at the hardware level. The proposed approach to the implementation of the Aho-Korasik algorithm can make it possible to ensure the efficient use of resources, such as memory and energy.
Overgaard, Jacob E. F., Hertel, Jens Christian, Pejtersen, Jens, Knott, Arnold.  2018.  Application Specific Integrated Gate-Drive Circuit for Driving Self-Oscillating Gallium Nitride Logic-Level Power Transistors. 2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC). :1—6.
Wide bandgap power semiconductors are key enablers for increasing the power density of switch-mode power supplies. However, they require new gate drive technologies. This paper examines and characterizes a fabricated gate-driver in a class-E resonant inverter. The gate-driver's total area of 1.2mm2 includes two high-voltage transistors for gate-driving, integrated complementary metal-oxide-semiconductor (CMOS) gate-drivers, high-speed floating level-shifter and reset circuitry. A prototype printed circuit board (PCB) was designed to assess the implications of an electrostatic discharge (ESD) diode, its parasitic capacitance and package bondwire connections. The parasitic capacitance was estimated using its discharge time from an initial voltage and the capacitance is 56.7 pF. Both bondwires and the diode's parasitic capacitance is neglegible. The gate-driver's functional behaviour is validated using a parallel LC resonant tank resembling a self-oscillating gate-drive. Measurements and simulations show the ESD diode clamps the output voltage to a minimum of -2V.
Harkanson, R., Kim, Y..  2017.  Applications of Elliptic Curve Cryptography: A Light Introduction to Elliptic Curves and a Survey of Their Applications. Proceedings of the 12th Annual Conference on Cyber and Information Security Research. :6:1–6:7.

Elliptic curve cryptography (ECC) is a relatively newer form of public key cryptography that provides more security per bit than other forms of cryptography still being used today. We explore the mathematical structure and operations of elliptic curves and how those properties make curves suitable tools for cryptography. A brief historical context is given followed by the safety of usage in production, as not all curves are free from vulnerabilities. Next, we compare ECC with other popular forms of cryptography for both key exchange and digital signatures, in terms of security and speed. Traditional applications of ECC, both theoretical and in-practice, are presented, including key exchange for web browser usage and DNSSEC. We examine multiple uses of ECC in a mobile context, including cellular phones and the Internet of Things. Modern applications of curves are explored, such as iris recognition, RFID, smart grid, as well as an application for E-health. Finally, we discuss how ECC stacks up in a post-quantum cryptography world.

Rathmair, M., Schupfer, F., Krieg, C..  2014.  Applied formal methods for hardware Trojan detection. Circuits and Systems (ISCAS), 2014 IEEE International Symposium on. :169-172.

This paper addresses the potential danger using integrated circuits which contain malicious hardware modifications hidden in the silicon structure. A so called hardware Trojan may be added at several stages of the chip development process. This work concentrates on formal hardware Trojan detection during the design phase and highlights applied verification techniques. Selected methods are discussed and their combination used to increase an introduced “Trojan Assurance Level”.
 

Hao, K., Achanta, S. V., Fowler, J., Keckalo, D..  2017.  Apply a wireless line sensor system to enhance distribution protection schemes. 2017 70th Annual Conference for Protective Relay Engineers (CPRE). :1–11.

Traditionally, utility crews have used faulted circuit indicators (FCIs) to locate faulted line sections. FCIs monitor current and provide a local visual indication of recent fault activity. When a fault occurs, the FCIs operate, triggering a visual indication that is either a mechanical target (flag) or LED. There are also enhanced FCIs with communications capability, providing fault status to the outage management system (OMS) or supervisory control and data acquisition (SCADA) system. Such quickly communicated information results in faster service restoration and reduced outage times. For distribution system protection, protection devices (such as recloser controls) must coordinate with downstream devices (such as fuses or other recloser controls) to clear faults. Furthermore, if there are laterals on a feeder that are protected by a recloser control, it is desirable to communicate to the recloser control which lateral had the fault in order to enhance tripping schemes. Because line sensors are typically placed along distribution feeders, they are capable of sensing fault status and characteristics closer to the fault. If such information can be communicated quickly to upstream protection devices, at protection speeds, the protection devices can use this information to securely speed up distribution protection scheme operation. With recent advances in low-power electronics, wireless communications, and small-footprint sensor transducers, wireless line sensors can now provide fault information to the protection devices with low latencies that support protection speeds. This paper describes the components of a wireless protection sensor (WPS) system, its integration with protection devices, and how the fault information can be transmitted to such devices. Additionally, this paper discusses how the protection devices use this received fault information to securely speed up the operation speed of and improve the selectivity of distribution protection schemes, in add- tion to locating faulted line sections.

Kumari, K. A., Sadasivam, G. S., Gowri, S. S., Akash, S. A., Radhika, E. G..  2018.  An Approach for End-to-End (E2E) Security of 5G Applications. 2018 IEEE 4th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing, (HPSC) and IEEE International Conference on Intelligent Data and Security (IDS). :133–138.
As 5G transitions from an industrial vision to a tangible, next-generation mobile technology, security remains key business driver. Heterogeneous environment, new networking paradigms and novel use cases makes 5G vulnerable to new security threats. This in turn necessitates a flexible and dependable security mechanism. End-to-End (E2E) data protection provides better security, avoids repeated security operations like encryption/decryption and provides differentiated security based on the services. E2E security deals with authentication, integrity, key management and confidentiality. The attack surface of a 5G system is larger as 5G aims for a heterogeneous networked society. Hence attack resistance needs to be a design consideration when defining new 5G protocols. This framework has been designed for accessing the manifold applications with high security and trust by offering E2E security for various services. The proposed framework is evaluated based on computation complexity, communication complexity, attack resistance rate and security defensive rate. The protocol is also evaluated for correctness, and resistance against passive, active and dictionary attacks using random oracle model and Automated Validation of Internet Security Protocols and Applications (AVISPA) tool.