Biblio
Advanced Persistent Threat (APT) attacks, which have become prevalent in recent years, are classified into four phases. These are initial compromise phase, attacking infrastructure building phase, penetration and exploration phase, and mission execution phase. The malware on infected terminals attempts various communications on and after the attacking infrastructure building phase. In this research, using OpenFlow technology for virtual networks, we developed a system of identifying infected terminals by detecting communication events of malware communications in APT attacks. In addition, we prevent information fraud by using OpenFlow, which works as real-time path control. To evaluate our system, we executed malware infection experiments with a simulation tool for APT attacks and malware samples. In these experiments, an existing network using only entry control measures was prepared. As a result, we confirm the developed system is effective.
In this paper a joint algorithm was designed to detect a variety of unauthorized access risks in multilevel hybrid cloud. First of all, the access history is recorded among different virtual machines in multilevel hybrid cloud using the global flow diagram. Then, the global flow graph is taken as auxiliary decision-making basis to design legitimacy detection algorithm based data access and is represented by formal representation, Finally the implement process was specified, and the algorithm can effectively detect operating against regulations such as simple unauthorized level across, beyond indirect unauthorized and other irregularities.
In the light of the information revolution, and the propagation of big social data, the dissemination of misleading information is certainly difficult to control. This is due to the rapid and intensive flow of information through unconfirmed sources under the propaganda and tendentious rumors. This causes confusion, loss of trust between individuals and groups and even between governments and their citizens. This necessitates a consolidation of efforts to stop penetrating of false information through developing theoretical and practical methodologies aim to measure the credibility of users of these virtual platforms. This paper presents an approach to domain-based prediction to user's trustworthiness of Online Social Networks (OSNs). Through incorporating three machine learning algorithms, the experimental results verify the applicability of the proposed approach to classify and predict domain-based trustworthy users of OSNs.
Cloud computing is an emerging technology that provides services to its users via Internet. It also allows sharing of resources there by reducing cost, money and space. With the popularity of cloud and its advantages, the trend of information industry shifting towards cloud services is increasing tremendously. Different cloud service providers are there on internet to provide services to the users. These services provided have certain parameters to provide better usage. It is difficult for the users to select a cloud service that is best suited to their requirements. Our proposed approach is based on data mining classification technique with fuzzy logic. Proposed algorithm uses cloud service design factors (security, agility and assurance etc.) and international standards to suggest the cloud service. The main objective of this research is to enable the end cloud users to choose best service as per their requirements and meeting international standards. We test our system with major cloud provider Google, Microsoft and Amazon.
Software discovery is a key management function to ensure that systems are free of vulnerabilities, comply with licensing requirements, and support advanced search for systems containing given software. Today, software is predominantly discovered through querying package management tools, or using rules that check for file metadata or contents. These approaches are inadequate as not every software is installed through package managers, and agile development practices lead to frequent deployment of software. Other approaches to software discovery use machine learning methods requiring training phase, or require maintaining knowledge bases. Columbus uses the knowledge of the software packaging practices that evolved over time, and uses the information embedded in the file system impression created by a software package to discover it. Columbus is able to discover software in 92% of all official Docker images. Further, Columbus can be used in problem diagnosis and drift detection situations to compare two different systems, or to determine the evolution of a system overtime.
To protect sensitive data processed by current applications, developers, whether security experts or not, have to rely on cryptography. While cryptography algorithms have become increasingly advanced, many data breaches occur because developers do not correctly use the corresponding APIs. To guide future research into practical solutions to this problem, we perform an empirical investigation into the obstacles developers face while using the Java cryptography APIs, the tasks they use the APIs for, and the kind of (tool) support they desire. We triangulate data from four separate studies that include the analysis of 100 StackOverflow posts, 100 GitHub repositories, and survey input from 48 developers. We find that while developers find it difficult to use certain cryptographic algorithms correctly, they feel surprisingly confident in selecting the right cryptography concepts (e.g., encryption vs. signatures). We also find that the APIs are generally perceived to be too low-level and that developers prefer more task-based solutions.
Recently a huge trend on the internet of things (IoT) and an exponential increase in automated tools are helping malware producers to target IoT devices. The traditional security solutions against malware are infeasible due to low computing power for large-scale data in IoT environment. The number of malware and their variants are increasing due to continuous malware attacks. Consequently, the performance improvement in malware analysis is critical requirement to stop rapid expansion of malicious attacks in IoT environment. To solve this problem, the paper proposed a novel framework for classifying malware in IoT environment. To achieve flne-grained malware classification in suggested framework, the malware image classification system (MICS) is designed for representing malware image globally and locally. MICS first converts the suspicious program into the gray-scale image and then captures hybrid local and global malware features to perform malware family classification. Preliminary experimental outcomes of MICS are quite promising with 97.4% classification accuracy on 9342 windows suspicious programs of 25 families. The experimental results indicate that proposed framework is quite capable to process large-scale IoT malware.
In order to develop a `common session secret key' though the insecure channel, cryptographic Key Agreement Protocol plays a major role. Many researchers' cryptographic protocol uses smart card as a medium to store transaction secret values. The tampered resistance property of smart card is unable to defend the secret values from side channel attacks. It means a lost smart card is an easy target for any attacker. Though password authentication helps the protocol to give secrecy but on-line as well as off-line password guessing attack can make the protocol vulnerable. The concerned paper manifested key agreement protocol based on three party authenticated key agreement protocol to defend all password related attacks. The security analysis of our paper has proven that the accurate guess of the password of a legitimate user will not help the adversary to generate a common session key.
Malware damages computers and the threat is a serious problem. Malware can be detected by pattern matching method or dynamic heuristic method. However, it is difficult to detect all new malware subspecies perfectly by existing methods. In this paper, we propose a new method which automatically detects new malware subspecies by static analysis of execution files and machine learning. The method can distinguish malware from benignware and it can also classify malware subspecies into malware families. We combine static analysis of execution files with machine learning classifier and natural language processing by machine learning. Information of DLL Import, assembly code and hexdump are acquired by static analysis of execution files of malware and benignware to create feature vectors. Paragraph vectors of information by static analysis of execution files are created by machine learning of PV-DBOW model for natural language processing. Support vector machine and classifier of k-nearest neighbor algorithm are used in our method, and the classifier learns paragraph vectors of information by static analysis. Unknown execution files are classified into malware or benignware by pre-learned SVM. Moreover, malware subspecies are also classified into malware families by pre-learned k-nearest. We evaluate the accuracy of the classification by experiments. We think that new malware subspecies can be effectively detected by our method without existing methods for malware analysis such as generic method and dynamic heuristic method.
Blockchain technology is attracting attention as an innovative system for decentralized payments in fields such as financial area. On the other hand, in a decentralized environment, management of a secret key used for user authentication and digital signature becomes a big issue because if a user loses his/her secret key, he/she will also lose assets on the blockchain. This paper describes the secret key management issues in blockchain systems and proposes a solution using a biometrics-based digital signature scheme. In our proposed system, a secret key to be used for digital signature is generated from the user's biometric information each time and immediately deleted from the memory after using it. Therefore, our blockchain system has the advantage that there is no need for storage for storing secret keys throughout the system. As a result, the user does not have a risk of losing the key management devices and can prevent attacks from malware that steals the secret key.
Wireless sensor network is a low cost network to solve many of the real world problems. These sensor nodes used to deploy in the hostile or unattended areas to sense and monitor the atmospheric situations such as motion, pressure, sound, temperature and vibration etc. The sensor nodes have low energy and low computing power, any security scheme for wireless sensor network must not be computationally complex and it should be efficient. In this paper we introduced a secure routing protocol for WSNs, which is able to prevent the network from DDoS attack. In our methodology we scan the infected nodes using the proposed algorithm and block that node from any further activities in the network. To protect the network we use intrusion prevention scheme, where specific nodes of the network acts as IPS node. These nodes operate in their radio range for the region of the network and scan the neighbors regularly. When the IPS node find a misbehavior node which is involves in frequent message passing other than UDP and TCP messages, IPS node blocks the infected node and also send the information to all genuine sender nodes to change their routes. All simulation work has been done using NS 2.35. After simulation the proposed scheme gives feasible results to protect the network against DDoS attack. The performance parameters have been improved after applying the security mechanism on an infected network.
The Science DMZ (SDMZ) is a special purpose network infrastructure that is engineered to cater to the ultra-high bandwidth needs of the scientific and high performance computing (HPC) communities. These networks are isolated from stateful security devices such as firewalls and deep packet inspection (DPI) engines to allow HPC data transfer nodes (DTNs) to efficiently transfer petabytes of data without associated bandwidth and performance bottlenecks. This paper presents our ongoing effort toward the development of more fine-grained data flow access control policies to manage SDMZ networks that service large-scale experiments with varying data sensitivity levels and privacy constraints. We present a novel system, called CoordiNetZ (CNZ), that provides coordinated security monitoring and policy enforcement for sites participating in SDMZ projects by using an intent-based policy framework for effectively capturing the high-level policy intents of non-admin SDMZ project users (e.g., scientists, researchers, students). Central to our solution is the notion of coordinated situational awareness that is extracted from the synthesis of context derived from SDMZ host DTN applications and the network substrate. To realize this vision, we present a specialized process-monitoring system and flow-monitoring tool that facilitate context-aware data-flow intervention and policy enforcement in ultra-highspeed data transfer environments. We evaluate our prototype implementation using case studies that highlight the utility of our framework and demonstrate how security policy could be effectively specified and implemented within and across SDMZ networks.
Security is concerned with protecting assets. The aspects of security can be applied to any situation- defense, detection and deterrence. Network security plays important role of protecting information, hardware and software on a computer network. Denial of service (DOS) attacks causes great impacts on the internet world. These attacks attempt to disrupt legitimate user's access to services. By exploiting computer's vulnerabilities, attackers easily consume victim's resources. Many special techniques have been developed to protest against DOS attacks. Some organizations constitute several defense mechanism tools to tackle the security problems. This paper has proposed various types of attacks and solutions associated with each layers of OSI model. These attacks and solutions have different impacts on the different environment. Thus the rapid growth of new technologies may constitute still worse impacts of attacks in the future.
In this paper, we propose a new risk analysis framework that enables to supervise risks in complex and distributed systems. Our contribution is twofold. First, we provide the Risk Assessment Graphs (RAGs) as a model of risk analysis. This graph-based model is adaptable to the system changes over the time. We also introduce the potentiality and the accessibility functions which, during each time slot, evaluate respectively the chance of exploiting the RAG's nodes, and the connection time between these nodes. In addition, we provide a worst-case risk evaluation approach, based on the assumption that the intruder threats usually aim at maximising their benefits by inflicting the maximum damage to the target system (i.e. choosing the most likely paths in the RAG). We then introduce three security metrics: the propagated risk, the node risk and the global risk. We illustrate the use of our framework through the simple example of an enterprise email service. Our framework achieves both flexibility and generality requirements, it can be used to assess the external threats as well as the insider ones, and it applies to a wide set of applications.
In this paper, we propose a new risk analysis framework that enables to supervise risks in complex and distributed systems. Our contribution is twofold. First, we provide the Risk Assessment Graphs (RAGs) as a model of risk analysis. This graph-based model is adaptable to the system changes over the time. We also introduce the potentiality and the accessibility functions which, during each time slot, evaluate respectively the chance of exploiting the RAG's nodes, and the connection time between these nodes. In addition, we provide a worst-case risk evaluation approach, based on the assumption that the intruder threats usually aim at maximising their benefits by inflicting the maximum damage to the target system (i.e. choosing the most likely paths in the RAG). We then introduce three security metrics: the propagated risk, the node risk and the global risk. We illustrate the use of our framework through the simple example of an enterprise email service. Our framework achieves both flexibility and generality requirements, it can be used to assess the external threats as well as the insider ones, and it applies to a wide set of applications.
In this paper, we propose a new risk analysis framework that enables to supervise risks in complex and distributed systems. Our contribution is twofold. First, we provide the Risk Assessment Graphs (RAGs) as a model of risk analysis. This graph-based model is adaptable to the system changes over the time. We also introduce the potentiality and the accessibility functions which, during each time slot, evaluate respectively the chance of exploiting the RAG's nodes, and the connection time between these nodes. In addition, we provide a worst-case risk evaluation approach, based on the assumption that the intruder threats usually aim at maximising their benefits by inflicting the maximum damage to the target system (i.e. choosing the most likely paths in the RAG). We then introduce three security metrics: the propagated risk, the node risk and the global risk. We illustrate the use of our framework through the simple example of an enterprise email service. Our framework achieves both flexibility and generality requirements, it can be used to assess the external threats as well as the insider ones, and it applies to a wide set of applications.
Semiconductor design houses are increasingly becoming dependent on third party vendors to procure intellectual property (IP) and meet time-to-market constraints. However, these third party IPs cannot be trusted as hardware Trojans can be maliciously inserted into them by untrusted vendors. While different approaches have been proposed to detect Trojans in third party IPs, their limitations have not been extensively studied. In this paper, we analyze the limitations of the state-of-the-art Trojan detection techniques and demonstrate with experimental results how to defeat these detection mechanisms. We then propose a Trojan detection framework based on information flow security (IFS) verification. Our framework detects violation of IFS policies caused by Trojans without the need of white-box knowledge of the IP. We experimentally validate the efficacy of our proposed technique by accurately identifying Trojans in the trust-hub benchmarks. We also demonstrate that our technique does not share the limitations of the previously proposed Trojan detection techniques.
A finite state machine (FSM) is responsible for controlling the overall functionality of most digital systems and, therefore, the security of the whole system can be compromised if there are vulnerabilities in the FSM. These vulnerabilities can be created by improper designs or by the synthesis tool which introduces additional don't-care states and transitions during the optimization and synthesis process. An attacker can utilize these vulnerabilities to perform fault injection attacks or insert malicious hardware modifications (Trojan) to gain unauthorized access to some specific states. To our knowledge, no systematic approaches have been proposed to analyze these vulnerabilities in FSM. In this paper, we develop a framework named Analyzing Vulnerabilities in FSM (AVFSM) which extracts the state transition graph (including the don't-care states and transitions) from a gate-level netlist using a novel Automatic Test Pattern Generation (ATPG) based approach and quantifies the vulnerabilities of the design to fault injection and hardware Trojan insertion. We demonstrate the applicability of the AVFSM framework by analyzing the vulnerabilities in the FSM of AES and RSA encryption module. We also propose a low-cost mitigation technique to make FSM more secure against these attacks.
This paper presents TrustSign, a novel, trusted automatic malware signature generation method based on high-level deep features transferred from a VGG-19 neural network model pre-trained on the ImageNet dataset. While traditional automatic malware signature generation techniques rely on static or dynamic analysis of the malware's executable, our method overcomes the limitations associated with these techniques by producing signatures based on the presence of the malicious process in the volatile memory. Signatures generated using TrustSign well represent the real malware behavior during runtime. By leveraging the cloud's virtualization technology, TrustSign analyzes the malicious process in a trusted manner, since the malware is unaware and cannot interfere with the inspection procedure. Additionally, by removing the dependency on the malware's executable, our method is capable of signing fileless malware. Thus, we focus our research on in-browser cryptojacking attacks, which current antivirus solutions have difficulty to detect. However, TrustSign is not limited to cryptojacking attacks, as our evaluation included various ransomware samples. TrustSign's signature generation process does not require feature engineering or any additional model training, and it is done in a completely unsupervised manner, obviating the need for a human expert. Therefore, our method has the advantage of dramatically reducing signature generation and distribution time. The results of our experimental evaluation demonstrate TrustSign's ability to generate signatures invariant to the process state over time. By using the signatures generated by TrustSign as input for various supervised classifiers, we achieved 99.5% classification accuracy.