Visible to the public Biblio

Filters: First Letter Of Last Name is Q  [Clear All Filters]
A B C D E F G H I J K L M N O P [Q] R S T U V W X Y Z   [Show ALL]
Q
Quweider, M., Lei, H., Zhang, L., Khan, F..  2018.  Managing Big Data in Visual Retrieval Systems for DHS Applications: Combining Fourier Descriptors and Metric Space Indexing. 2018 1st International Conference on Data Intelligence and Security (ICDIS). :188-193.

Image retrieval systems have been an active area of research for more than thirty years progressively producing improved algorithms that improve performance metrics, operate in different domains, take advantage of different features extracted from the images to be retrieved, and have different desirable invariance properties. With the ever-growing visual databases of images and videos produced by a myriad of devices comes the challenge of selecting effective features and performing fast retrieval on such databases. In this paper, we incorporate Fourier descriptors (FD) along with a metric-based balanced indexing tree as a viable solution to DHS (Department of Homeland Security) needs to for quick identification and retrieval of weapon images. The FDs allow a simple but effective outline feature representation of an object, while the M-tree provide a dynamic, fast, and balanced search over such features. Motivated by looking for applications of interest to DHS, we have created a basic guns and rifles databases that can be used to identify weapons in images and videos extracted from media sources. Our simulations show excellent performance in both representation and fast retrieval speed.

Qureshi, Ayyaz-Ul-Haq, Larijani, Hadi, Javed, Abbas, Mtetwa, Nhamoinesu, Ahmad, Jawad.  2019.  Intrusion Detection Using Swarm Intelligence. 2019 UK/ China Emerging Technologies (UCET). :1–5.
Recent advances in networking and communication technologies have enabled Internet-of-Things (IoT) devices to communicate more frequently and faster. An IoT device typically transmits data over the Internet which is an insecure channel. Cyber attacks such as denial-of-service (DoS), man-in-middle, and SQL injection are considered as big threats to IoT devices. In this paper, an anomaly-based intrusion detection scheme is proposed that can protect sensitive information and detect novel cyber-attacks. The Artificial Bee Colony (ABC) algorithm is used to train the Random Neural Network (RNN) based system (RNN-ABC). The proposed scheme is trained on NSL-KDD Train+ and tested for unseen data. The experimental results suggest that swarm intelligence and RNN successfully classify novel attacks with an accuracy of 91.65%. Additionally, the performance of the proposed scheme is also compared with a hybrid multilayer perceptron (MLP) based intrusion detection system using sensitivity, mean of mean squared error (MMSE), the standard deviation of MSE (SDMSE), best mean squared error (BMSE) and worst mean squared error (WMSE) parameters. All experimental tests confirm the robustness and high accuracy of the proposed scheme.
Qurashi, Mohammed Al, Angelopoulos, Constantinos Marios, Katos, Vasilios.  2020.  An Architecture for Resilient Intrusion Detection in IoT Networks. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–7.
We introduce a lightweight architecture of Intrusion Detection Systems (IDS) for ad-hoc IoT networks. Current state-of-the-art IDS have been designed based on assumptions holding from conventional computer networks, and therefore, do not properly address the nature of IoT networks. In this work, we first identify the correlation between the communication overheads and the placement of an IDS (as captured by proper placement of active IDS agents in the network). We model such networks as Random Geometric Graphs. We then introduce a novel IDS architectural approach by having only a minimum subset of the nodes acting as IDS agents. These nodes are able to monitor the network and detect attacks at the networking layer in a collaborative manner by monitoring 1-hop network information provided by routing protocols such as RPL. Conducted experiments show that our proposed IDS architecture is resilient and robust against frequent topology changes due to node failures. Our detailed experimental evaluation demonstrates significant performance gains in terms of communication overhead and energy dissipation while maintaining high detection rates.
Qundus, Jamal Al.  2016.  Generating Trust in Collaborative Annotation Environments. Proceedings of the 12th International Symposium on Open Collaboration Companion. :3:1–3:4.

The main goal of this work is to create a model of trust which can be considered as a reference for developing applications oriented on collaborative annotation. Such a model includes design parameters inferred from online communities operated on collaborative content. This study aims to create a static model, but it could be dynamic or more than one model depending on the context of an application. An analysis on Genius as a peer production community was done to understand user behaviors. This study characterizes user interactions based on the differentiation between Lightweight Peer Production (LWPP) and Heavyweight Peer Production (HWPP). It was found that more LWPP- interactions take place in the lower levels of this system. As the level in the role system increases, there will be more HWPP-interactions. This can be explained as LWPP-interacions are straightforward, while HWPP-interations demand more agility by the user. These provide more opportunities and therefore attract other users for further interactions.

Quirolgico, Steve.  2014.  App vetting systems: Issues and challenges. IT Professional Conference (IT Pro), 2014. :1-13.

App vetting is the process of approving or rejecting an app prior to deployment on a mobile device. • The decision to approve or reject an app is based on the organization's security requirements and the type and severity of security vulnerabilities found in the app. • Security vulnerabilities including Cross Site Scripting (XSS), information leakage, authentication and authorization, session management, and SQL injection can be exploited to steal information or control a device.
 

Quinn, Ren, Holguin, Nico, Poster, Ben, Roach, Corey, Merwe, Jacobus Kobus Van der.  2019.  WASPP: Workflow Automation for Security Policy Procedures. 2019 15th International Conference on Network and Service Management (CNSM). :1–5.

Every day, university networks are bombarded with attempts to steal the sensitive data of the various disparate domains and organizations they serve. For this reason, universities form teams of information security specialists called a Security Operations Center (SOC) to manage the complex operations involved in monitoring and mitigating such attacks. When a suspicious event is identified, members of the SOC are tasked to understand the nature of the event in order to respond to any damage the attack might have caused. This process is defined by administrative policies which are often very high-level and rarely systematically defined. This impedes the implementation of generalized and automated event response solutions, leading to specific ad hoc solutions based primarily on human intuition and experience as well as immediate administrative priorities. These solutions are often fragile, highly specific, and more difficult to reuse in other scenarios.

Quingueni, A. M., Kitsuwan, N..  2019.  Reduction of traffic between switches and IDS for prevention of DoS attack in SDN. 2019 19th International Symposium on Communications and Information Technologies (ISCIT). :277—281.

Denial of service (DoS) is a process of injecting malicious packets into the network. Intrusion detection system (IDS) is a system used to investigate malicious packets in the network. Software-defined network (SDN) physically separates control plane and data plane. The control plane is moved to a centralized controller, and it makes a decision in the network from a global view. The combination between IDS and SDN allows the prevention of malicious packets to be more efficient due to the advantage of the global view in SDN. IDS needs to communicate with switches to have an access to all end-to-end traffic in the network. The high traffic in the link between switches and IDS results in congestion. The congestion between switches and IDS delays the detection and prevention of malicious traffic. To address this problem, we propose a historical database (Hdb), a scheme to reduce the traffic between switches and IDS, based on the historical information of a sender. The simulation shows that in the average, 54.1% of traffic mirrored to IDS is reduced compared to the conventional schemes.

Quincozes, S. E., Passos, D., Albuquerque, C., Ochi, L. S., Mossé, D..  2020.  GRASP-based Feature Selection for Intrusion Detection in CPS Perception Layer. 2020 4th Conference on Cloud and Internet of Things (CIoT). :41—48.

Cyber-Physical Systems (CPS) will form the basis for the world's critical infrastructure and, thus, have the potential to significantly impact human lives in the near future. In recent years, there has been an increasing demand for connectivity in CPS, which has brought to attention the issue of cyber security. Aside from traditional information systems threats, CPS faces new challenges due to the heterogeneity of devices and protocols. In this paper, we investigate how Feature Selection may improve intrusion detection accuracy. In particular, we propose an adapted Greedy Randomized Adaptive Search Procedure (GRASP) metaheuristic to improve the classification performance in CPS perception layer. Our numerical results reveal that GRASP metaheuristic overcomes traditional filter-based feature selection methods for detecting four attack classes in CPSs.

Quijano, Andrew, Akkaya, Kemal.  2019.  Server-Side Fingerprint-Based Indoor Localization Using Encrypted Sorting. 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems Workshops (MASSW). :53–57.
GPS signals, the main origin of navigation, are not functional in indoor environments. Therefore, Wi-Fi access points have started to be increasingly used for localization and tracking inside the buildings by relying on fingerprint-based approach. However, with these types of approaches, several concerns regarding the privacy of the users have arisen. Malicious individuals can determine a clients daily habits and activities by simply analyzing their wireless signals. While there are already efforts to incorporate privacy to the existing fingerprint-based approaches, they are limited to the characteristics of the homo-morphic cryptographic schemes they employed. In this paper, we propose to enhance the performance of these approaches by exploiting another homomorphic algorithm, namely DGK, with its unique encrypted sorting capability and thus pushing most of the computations to the server side. We developed an Android app and tested our system within a Columbia University dormitory. Compared to existing systems, the results indicated that more power savings can be achieved at the client side and DGK can be a viable option with more powerful server computation capabilities.
Quigley, Kevin, Enslin, Johan H., Nazir, Moazzam, Greenwood, Austin.  2020.  Microgrid Design and Control of a Hybrid Building Complex. 2020 IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). :51—56.
Microgrids are a promising alternative to the traditional distribution systems due to their highly desirable features, such as, reliability, resiliency, and efficiency. This paper covers the design, simulation, and economic analysis of a theoretically designed modern, mixed-use commercial and residential building on a feeder in Charleston, SC, USA. The designed system is simulated in PSCAD/EMTDC. The system combines a natural gas CHP turbine and generator block set, solar photovoltaics (PV), and a battery energy storage system (BESS). It is planned to provide power through a DC lighting bus and an AC to several different commercial load profiles as well as 40 apartments of varying sizes. Additionally, a comprehensive economic analysis is completed with available or estimated pricing to prove the feasibility of such a project.
Quevedo, C. H. O. O., Quevedo, A. M. B. C., Campos, G. A., Gomes, R. L., Celestino, J., Serhrouchni, A..  2020.  An Intelligent Mechanism for Sybil Attacks Detection in VANETs. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Vehicular Ad Hoc Networks (VANETs) have a strategic goal to achieve service delivery in roads and smart cities, considering the integration and communication between vehicles, sensors and fixed road-side components (routers, gateways and services). VANETs have singular characteristics such as fast mobile nodes, self-organization, distributed network and frequently changing topology. Despite the recent evolution of VANETs, security, data integrity and users privacy information are major concerns, since attacks prevention is still open issue. One of the most dangerous attacks in VANETs is the Sybil, which forges false identities in the network to disrupt compromise the communication between the network nodes. Sybil attacks affect the service delivery related to road safety, traffic congestion, multimedia entertainment and others. Thus, VANETs claim for security mechanism to prevent Sybil attacks. Within this context, this paper proposes a mechanism, called SyDVELM, to detect Sybil attacks in VANETs based on artificial intelligence techniques. The SyDVELM mechanism uses Extreme Learning Machine (ELM) with occasional features of vehicular nodes, minimizing the identification time, maximizing the detection accuracy and improving the scalability. The results suggest that the suitability of SyDVELM mechanism to mitigate Sybil attacks and to maintain the service delivery in VANETs.
Querel, Louis-Philippe, Rigby, Peter C..  2018.  WarningsGuru: Integrating Statistical Bug Models with Static Analysis to Provide Timely and Specific Bug Warnings. Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. :892-895.

The detection of bugs in software systems has been divided into two research areas: static code analysis and statistical modeling of historical data. Static analysis indicates precise problems on line numbers but has the disadvantage of suggesting many warning which are often false positives. In contrast, statistical models use the history of the system to suggest which files or commits are likely to contain bugs. These course-grained predictions do not indicate to the developer the precise reasons for the bug prediction. We combine static analysis with statistical bug models to limit the number of warnings and provide specific warnings information at the line level. Previous research was able to process only a limited number of releases, our tool, WarningsGuru, can analyze all commits in a source code repository and we currently have processed thousands of commits and warnings. Since we process every commit, we present developers with more precise information about when a warning is introduced allowing us to show recent warnings that are introduced in statistically risky commits. Results from two OSS projects show that CommitGuru's statistical model flags 25% and 29% of all commits as risky. When we combine this with static analysis in WarningsGuru the number of risky commits with warnings is 20% for both projects and the number commits with new warnings is only 3% and 6%. We can drastically reduce the number of commits and warnings developers have to examine. The tool, source code, and demo is available at https://github.com/louisq/warningsguru.

Queiroz, Rodrigo, Berger, Thorsten, Czarnecki, Krzysztof.  2016.  Towards Predicting Feature Defects in Software Product Lines. Proceedings of the 7th International Workshop on Feature-Oriented Software Development. :58–62.

Defect-prediction techniques can enhance the quality assurance activities for software systems. For instance, they can be used to predict bugs in source files or functions. In the context of a software product line, such techniques could ideally be used for predicting defects in features or combinations of features, which would allow developers to focus quality assurance on the error-prone ones. In this preliminary case study, we investigate how defect prediction models can be used to identify defective features using machine-learning techniques. We adapt process metrics and evaluate and compare three classifiers using an open-source product line. Our results show that the technique can be effective. Our best scenario achieves an accuracy of 73 % for accurately predicting features as defective or clean using a Naive Bayes classifier. Based on the results we discuss directions for future work.

Queiroz, Rodrigo, Berger, Thorsten, Czarnecki, Krzysztof.  2016.  Towards Predicting Feature Defects in Software Product Lines. Proceedings of the 7th International Workshop on Feature-Oriented Software Development. :58–62.

Defect-prediction techniques can enhance the quality assurance activities for software systems. For instance, they can be used to predict bugs in source files or functions. In the context of a software product line, such techniques could ideally be used for predicting defects in features or combinations of features, which would allow developers to focus quality assurance on the error-prone ones. In this preliminary case study, we investigate how defect prediction models can be used to identify defective features using machine-learning techniques. We adapt process metrics and evaluate and compare three classifiers using an open-source product line. Our results show that the technique can be effective. Our best scenario achieves an accuracy of 73 % for accurately predicting features as defective or clean using a Naive Bayes classifier. Based on the results we discuss directions for future work.

Queiroz, Diego V., Gomes, Ruan D., Benavente-Peces, Cesar, Fonseca, Iguatemi E., Alencar, Marcelo S..  2018.  Evaluation of Channels Blacklists in TSCH Networks with Star and Tree Topologies. Proceedings of the 14th ACM International Symposium on QoS and Security for Wireless and Mobile Networks. :116-123.
The Time-Slotted Channel Hopping (TSCH) mode, defined by the IEEE 802.15.4e protocol, aims to reduce the effects of narrowband interference and multipath fading on some channels through the frequency hopping method. To work satisfactorily, this method must be based on the evaluation of the channel quality through which the packets will be transmitted to avoid packet losses. In addition to the estimation, it is necessary to manage channel blacklists, which prevents the sensors from hopping to bad quality channels. The blacklists can be applied locally or globally, and this paper evaluates the use of a local blacklist through simulation of a TSCH network in a simulated harsh industrial environment. This work evaluates two approaches, and both use a developed protocol based on TSCH, called Adaptive Blacklist TSCH (AB-TSCH), that considers beacon packets and includes a link quality estimation with blacklists. The first approach uses the protocol to compare a simple version of TSCH to configurations with different sizes of blacklists in star topology. In this approach, it is possible to analyze the channel adaption method that occurs when the blacklist has 15 channels. The second approach uses the protocol to evaluate blacklists in tree topology, and discusses the inherent problems of this topology. The results show that, when the estimation is performed continuously, a larger blacklist leads to an increase of performance in star topology. In tree topology, due to the simultaneous transmissions among some nodes, the use of smaller blacklist showed better performance.
Quaum, M. A., Haider, S. Uddin, Haque, M. M..  2018.  An Improved Asymmetric Key Based Security Architecture for WSN. 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2). :1-5.

Ubiquitous Healthcare System (U-Healthcare) is a well-known application of wireless sensor networking (WSN). In this system, the sensors take less power for operating the function. As the data transfers between sensor and other stations is sensitive so there needs to provide a security scheme. Due to the low life of sensor nodes in Wireless Sensor Networks (WSN), asymmetric key based security (AKS) architecture is always considered as unsuitable for these types of networks. Several papers have been published in recent past years regarding how to incorporate AKS in WSN, Haque et al's Asymmetric key based Architecture (AKA) is one of them. But later it is found that this system has authentication problem and therefore prone to man-in-the-middle (MITM) attack, furthermore it is not a truly asymmetric based scheme. We address these issues in this paper and proposed a complete asymmetric approach using PEKS-PM (proposed by Pham in [8]) to remove impersonation attack. We also found some other vulnerabilities in the original AKA system and proposed solutions, therefore making it a better and enhanced asymmetric key based architecture.

Quanyan Zhu, University of Illinois at Urbana-Champaign, Tamer Başar, University of Illinois at Urbana-Champaign.  2013.  Game-Theoretic Approach to Feedback-Driven Multi-stage Moving Target Defense. 4th International Conference on Decision and Game Theory for Security (GameSec 2013).

The static nature of computer networks allows malicious attackers to easily gather useful information about the network using network scanning and packet sniffing. The employment of secure perimeter firewalls and intrusion detection systems cannot fully protect the network from sophisticated attacks. As an alternative to the expensive and imperfect detection of attacks, it is possible to improve network security by manipulating the attack surface of the network in order to create a moving target defense. In this paper, we introduce a proactive defense scheme that dynamically alters the attack surface of the network to make it difficult for attackers to gather system information by increasing complexity and reducing its signatures. We use concepts from systems and control literature to design an optimal and efficient multi-stage defense mechanism based on a feedback information structure. The change of
attack surface involves a reconfiguration cost and a utility gain resulting from risk reduction. We use information- and control-theoretic tools to provide closed-form optimal randomization strategies. The results are corroborated by a case study and several numerical examples.

Quanyan Zhu, University of Illinois at Urbana-Champaign, Tamer Başar, University of Illinois at Urbana-Champaign.  2012.  Game-Theoretic Methods for Distributed Management of Energy Resources in the Smart Grid.

The smart grid is an ever-growing complex dynamic system with multiple interleaved layers and a large number of interacting components. In this talk, we discuss how game-theoretic tools can be used as an analytical tool to understand strategic interactions at different layers of the system and between different decision-making entities for distributed management of energy resources. We first investigate the issue of integration of renewable energy resources into the power grid. We establish a game-theoretic framework for modeling the strategic behavior of buses that are connected to renewable energy resources, and study the Nash equilibrium solution of distributed power generation at each bus. Our framework uses a cross-layer approach, taking into account the economic factors as well as system stability issues at the physical layer. In the second part of the talk, we discuss the issue of integration of plug-in electric vehicles (PHEVs) for vehicle-to-grid (V2G) transactions on the smart grid. Electric vehicles will be capable of buying and selling energy from smart parking lots in the future. We propose a multi-resolution and multi-layer stochastic differential game framework to study the dynamic decision-making process among PHEVs. We analyze the stochastic game in a large-population regime and account for the multiple types of interactions in the grid. Using these two settings, we demonstrate that game theory is a versatile tool to address many fundamental and emerging issues in the smart grid.

Presented at the Eighth Annual Carnegie Mellon Conference on the Electricity Industry Data-Driven Sustainable Engergy Systems in Pittsburgh, PA, March 12-14, 2012.

Quanyan Zhu, University of Illinois at Urbana-Champaign, Linda Bushnell, University of Washington, Tamer Başar, University of Illinois at Urbana-Champaign.  2013.  Resilient Distributed Control of Multi-agent Cyber-Physical Systems. Workshop on Control of Cyber-Physical Systems.

Abstract. Multi-agent cyber-physical systems (CPSs) are ubiquitous in modern infrastructure systems, including the future smart grid, transportation networks, and public health systems. Security of these systems are critical for normal operation of our society. In this paper, we focus on physical layer resilient control of these systems subject to cyber attacks and malicious behaviors of physical agents. We establish a cross-layer system model for the investigation of cross-layer coupling and performance interdependencies for CPSs. In addition, we study a twosystem synchronization problem in which one is a malicious agent who intends to mislead the entire system behavior through physical layer interactions. Feedback Nash equilibrium is used as the solution concept for the distributed control in the multi-agent system environment. We corroborate our results with numerical examples, which show the performance interdependencies between two CPSs through cyber and physical interactions.

Quanyan Zhu, University of Illinois at Urbana-Champaign, Carol Fung, Raouf Boutaba, Tamer Başar, University of Illinois at Urbana-Champaign.  2012.  GUIDEX: A Game-Theoretic Incentive-Based Mechanism for Intrusion Detection Networks. IEEE Journal on Selected Areas in Communications. 30(11)

Traditional intrusion detection systems (IDSs) work in isolation and can be easily compromised by unknown threats. An intrusion detection network (IDN) is a collaborative IDS network intended to overcome this weakness by allowing IDS peers to share detection knowledge and experience, and hence improve the overall accuracy of intrusion assessment. In this work, we design an IDN system, called GUIDEX, using gametheoretic modeling and trust management for peers to collaborate truthfully and actively. We first describe the system architecture and its individual components, and then establish a gametheoretic framework for the resource management component of GUIDEX. We establish the existence and uniqueness of a Nash equilibrium under which peers can communicate in a reciprocal incentive compatible manner. Based on the duality of the problem, we develop an iterative algorithm that converges geometrically to the equilibrium. Our numerical experiments and discrete event simulation demonstrate the convergence to the Nash equilibrium and the security features of GUIDEX against free riders, dishonest insiders and DoS attacks

Quanyan Zhu, University of Illinois at Urbana-Champaign, Linda Bushnell, Tamer Başar, University of Illinois at Urbana-Champaign.  2012.  Game-Theoretic Analysis of Node Capture and Cloning Attack with Multiple Attackers in Wireless Sensor Networks. 51st IEEE Conference on Decision and Control.

Wireless sensor networks are subject to attacks such as node capture and cloning, where an attacker physically captures sensor nodes, replicates the nodes, which are deployed into the network, and proceeds to take over the network. In this paper, we develop models for such an attack when there are multiple attackers in a network, and formulate multi-player games to model the noncooperative strategic behavior between the attackers and the network. We consider two cases: a static case where the attackers’ node capture rates are time-invariant and the network’s clone detection/revocation rate is a linear function of the state, and a dynamic case where the rates are general functions of time. We characterize Nash equilibrium solutions for both cases and derive equilibrium strategies for the players. In the static case, we study both the single-attacker and the multi-attacker games within an optimization framework, provide conditions for the existence of Nash equilibria and characterize them in closed forms. In the dynamic case, we study the underlying multi-person differential game under an open-loop information structure and provide a set of conditions to characterize the open-loop Nash equilibrium. We show the equivalence of the Nash equilibrium for the multi-person game to the saddle-point equilibrium between the network and the attackers as a team. We illustrate our results with numerical examples.

Quanyan Zhu, University of Illinois at Urbana-Champaign, Andrew Clark, Radha Poovendran, Tamer Başar, University of Illinois at Urbana-Champaign.  2013.  Deployment and Exploitation of Deceptive Honeybots in Social Networks. 52nd Conference on Decision and Control.

As social networking sites such as Facebook and Twitter are becoming increasingly popular, a growing number of malicious attacks, such as phishing and malware, are exploiting them. Among these attacks, social botnets have sophisticated infrastructure that leverages compromised user accounts, known as bots, to automate the creation of new social networking accounts for spamming and malware propagation. Traditional defense mechanisms are often passive and reactive to non-zero-day attacks. In this paper, we adopt a proactive approach for enhancing security in social networks by infiltrating botnets with honeybots. We propose an integrated system named SODEXO which can be interfaced with social networking sites for creating deceptive honeybots and leveraging them for gaining information from botnets. We establish a Stackelberg game framework to capture strategic interactions between honeybots and botnets, and use quantitative methods to understand the tradeoffs of honeybots for their deployment and exploitation in social networks. We design a protection and alert system that integrates both microscopic and macroscopic models of honeybots and optimally determines the security strategies for honeybots. We corroborate the proposed mechanism with extensive simulations and comparisons with passive defenses.

Quanyan Zhu, University of Illinois at Urbana-Champaign, Andrew Clark, Radha Poovendran, Tamer Başar, University of Illinois at Urbana-Champaign.  2012.  Deceptive Routing Games. 51st IEEE Conference on Decision and Control.

The use of a shared medium leaves wireless networks, including mobile ad hoc and sensor networks, vulnerable to jamming attacks. In this paper, we introduce a jamming defense mechanism for multiple-path routing networks based on maintaining deceptive flows, consisting of fake packets, between a source and a destination. An adversary observing a deceptive flow will expend energy on disrupting the fake packets, allowing the real data packets to arrive at the destination unharmed. We model this deceptive flow-based defense within a multi-stage stochastic game framework between the network nodes, which choose a routing path and flow rates for the real and fake data, and an adversary, which chooses which fraction of each flow to target at each hop. We develop an efficient, distributed procedure for computing the optimal routing at each hop and the optimal flow allocation at the destination. Furthermore, by studying the equilibria of the game, we quantify the benefit arising from deception, as reflected in an increase in the valid throughput. Our results are demonstrated via a simulation study.

Quanyan Zhu, University of Illinois at Urbana-Champaign, Tamer Başar, University of Illinois at Urbana-Champaign.  2012.  A Dynamic Game-Theoretic Approach to Resilient Control System Design for Cascading Failures. International Conference on High Confidence Networked Systems.

The migration of many current critical infrastructures, such as power grids and transportations systems, into open publicnetworks has posed many challenges in control systems. Modern control systems face uncertainties not only from the physical world but also from the cyber space. In this paper, we propose a hybrid game-theoretic approach to investigate the coupling between cyber security policy and robust control design. We study in detail the case of cascading failures in industrial control systems and provide a set of coupled optimality criteria in the linear-quadratic case. This approach can be further extended to more general cases of parallel cascading failures.

Quanyan Zhu, University of Illinois at Urbana-Champaign, Tamer Başar, University of Illinois at Urbana-Champaign.  2015.  Game-theoretic Methods for Robustness, Security and Resilience of Cyber-physical Control Systems: Games-in-games Principle for Optimal Cross-layer Resilient Control Systems. IEEE Control Systems Magazine. 35

Critical infrastructures, such as power grids and transportation systems, are increasingly using open networks for operation. The use of open networks poses many challenges for control systems.  The  classical  design  of  control systems  takes  into  account  modeling uncertainties  as  well  as  physical  disturbances,  providing  a  multitude  of control design methods such as robust control, adaptive control, and stochastic control. With the growing level of integration of control systems with new information technologies, modern control systems face uncertainties not only from the physical world but also from the cybercomponents of the system.  The vulnerabilities of the software deployed in the new control system infra- structure will expose the control system to many potential Game-Theoretic Methods for Robustness, Security, and Resilience of Cyberphysical Control Systems risks and threats from attackers. Exploitation of these vulnerabilities can lead to severe damage as has been reported in various news outlets [1], [2]. More recently, it has been reported in [3] and [4] that a computer worm, Stuxnet, was spread to target Siemens supervisory control and data acquisition (SCADA) systems that are configured to control and monitor specific industrial processes.