Visible to the public Biblio

Found 3923 results

Filters: First Letter Of Last Name is S  [Clear All Filters]
2021
Pashchenko, Ivan, Scandariato, Riccardo, Sabetta, Antonino, Massacci, Fabio.  2021.  Secure Software Development in the Era of Fluid Multi-party Open Software and Services. 2021 IEEE/ACM 43rd International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER). :91—95.
Pushed by market forces, software development has become fast-paced. As a consequence, modern development projects are assembled from 3rd-party components. Security & privacy assurance techniques once designed for large, controlled updates over months or years, must now cope with small, continuous changes taking place within a week, and happening in sub-components that are controlled by third-party developers one might not even know they existed. In this paper, we aim to provide an overview of the current software security approaches and evaluate their appropriateness in the face of the changed nature in software development. Software security assurance could benefit by switching from a process-based to an artefact-based approach. Further, security evaluation might need to be more incremental, automated and decentralized. We believe this can be achieved by supporting mechanisms for lightweight and scalable screenings that are applicable to the entire population of software components albeit there might be a price to pay.
Plappert, Christian, Zelle, Daniel, Gadacz, Henry, Rieke, Roland, Scheuermann, Dirk, Krauß, Christoph.  2021.  Attack Surface Assessment for Cybersecurity Engineering in the Automotive Domain. 2021 29th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). :266–275.
Connected smart cars enable new attacks that may have serious consequences. Thus, the development of new cars must follow a cybersecurity engineering process as defined for example in ISO/SAE 21434. A central part of such a process is the threat and risk assessment including an attack feasibility rating. In this paper, we present an attack surface assessment with focus on the attack feasibility rating compliant to ISO/SAE 21434. We introduce a reference architecture with assets constituting the attack surface, the attack feasibility rating for these assets, and the application of this rating on typical use cases. The attack feasibility rating assigns attacks and assets to an evaluation of the attacker dimensions such as the required knowledge and the feasibility of attacks derived from it. Our application of sample use cases shows how this rating can be used to assess the feasibility of an entire attack path. The attack feasibility rating can be used as a building block in a threat and risk assessment according to ISO/SAE 21434.
McKenzie, Thomas, Schlecht, Sebastian J., Pulkki, Ville.  2021.  Acoustic Analysis and Dataset of Transitions Between Coupled Rooms. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :481–485.
The measurement of room acoustics plays a wide role in audio research, from physical acoustics modelling and virtual reality applications to speech enhancement. While vast literature exists on position-dependent room acoustics and coupling of rooms, little has explored the transition from one room to its neighbour. This paper presents the measurement and analysis of a dataset of spatial room impulse responses for the transition between four coupled room pairs. Each transition consists of 101 impulse responses recorded using a fourth-order spherical microphone array in 5 cm intervals, both with and without a continuous line-of-sight between the source and microphone. A numerical analysis of the room transitions is then presented, including direct-to-reverberant ratio and direction of arrival estimations, along with potential applications and uses of the dataset.
Setiawan, Dharma Yusuf, Naning Hertiana, Sofia, Negara, Ridha Muldina.  2021.  6LoWPAN Performance Analysis of IoT Software-Defined-Network-Based Using Mininet-Io. 2020 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS). :60–65.
Software Defined Network (SDN) is a new paradigm in network architecture. The basic concept of SDN itself is to separate the control plane and forwarding plane explicitly. In the last few years, SDN technology has become one of the exciting topics for researchers, the development of SDN which was carried out, one of which was implementing the Internet of Things (IoT) devices in the SDN network architecture model. Mininet-IoT is developing the Mininet network emulator by adding virtualized IoT devices, 6LoWPAN based on wireless Linux standards, and 802.15.4 wireless simulation drivers. Mininet-IoT expands the Mininet code class by adding or modifying functions in it. This research will discuss the performance of the 6LoWPAN device on the internet of things (IoT) network by applying the SDN paradigm. We use the Mininet-IoT emulator and the Open Network Operating System (ONOS) controller using the internet of things (IoT) IPv6 forwarding. Performance testing by comparing some of the topologies of the addition of host, switch, and cluster. The test results of the two scenarios tested can be concluded; the throughput value obtained has decreased compared to the value of back-traffic traffic. While the packet loss value obtained is on average above 15%. Jitter value, delay, throughput, and packet loss are still in the category of enough, good, and very good based on TIPHON and ITU-T standards.
Ching, Tan Woei, Aman, Azana Hafizah Mohd, Azamuddin, Wan Muhd Hazwan, Sallehuddin, Hasimi, Attarbashi, Zainab Senan.  2021.  Performance Analysis of Internet of Things Routing Protocol for Low Power and Lossy Networks (RPL): Energy, Overhead and Packet Delivery. 2021 3rd International Cyber Resilience Conference (CRC). :1–6.
In line with the rapid development of the Internet of Things (IoT) network, the challenges faced are ensuring the network performance is capable to support the communication of these IoT devices. As a result, the routing protocols can provide fast route discovery and network maintenance by considering the IoT network's resource constraints. This paper's main contributions are to identify compatible IoT routing protocol using qualitative method and factor that affect network performance. Routing Protocol for Low Power and Lossy Networks (RPL) is a proactive distance- vector routing protocol designed as a proposed standard to meet the requirements of the Low Power and Lossy Networks (LLN). In this project, four influential factors on the performance of RPL in Contiki OS are examined using the Cooja simulator and then RPL performance is assessed in terms of Packet Delivery Ratio (PDR), Energy consumption and Overhead control message for the network. The project provides an insight into the implications of traffic patterns, transmission ranges, network size and node mobility for different scenarios. The results of the simulation show that the PDR and overhead ratio increases proportional to transmission distances increases but decreases while radio interference is increased. From the mobility aspect, PDR decreases by an average of 19.5% when the mobility nodes expand. On the other hand, energy consumption increases by an average of 63.7% and control message size increased up to 213% when the network consists of 40 percent of mobility nodes.
Lit, Yanyan, Kim, Sara, Sy, Eric.  2021.  A Survey on Amazon Alexa Attack Surfaces. 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC). :1–7.
Since being launched in 2014, Alexa, Amazon's versatile cloud-based voice service, is now active in over 100 million households worldwide [1]. Alexa's user-friendly, personalized vocal experience offers customers a more natural way of interacting with cutting-edge technology by allowing the ability to directly dictate commands to the assistant. Now in the present year, the Alexa service is more accessible than ever, available on hundreds of millions of devices from not only Amazon but third-party device manufacturers. Unfortunately, that success has also been the source of concern and controversy. The success of Alexa is based on its effortless usability, but in turn, that has led to a lack of sufficient security. This paper surveys various attacks against Amazon Alexa ecosystem including attacks against the frontend voice capturing and the cloud backend voice command recognition and processing. Overall, we have identified six attack surfaces covering the lifecycle of Alexa voice interaction that spans several stages including voice data collection, transmission, processing and storage. We also discuss the potential mitigation solutions for each attack surface to better improve Alexa or other voice assistants in terms of security and privacy.
2020
Susukailo, Vitalii, Opirskyy, Ivan, Vasylyshyn, Sviatoslav.  2020.  Analysis of the attack vectors used by threat actors during the pandemic. 2020 IEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT). 2:261—264.

This article describes attacks methods, vectors and technics used by threat actors during pandemic situations in the world. Identifies common targets of threat actors and cyber-attack tactics. The article analyzes cybersecurity challenges and specifies possible solutions and improvements in cybersecurity. Defines cybersecurity controls, which should be taken against analyzed attack vectors.

Samoshina, Anna, Promyslov, Vitaly, Kamesheva, Saniya, Galin, Rinat.  2020.  Application of Cloud Modeling Technologies in Ensuring Cyber Security of APCS. 2020 13th International Conference "Management of Large-Scale System Development" (MLSD). :1–5.
This paper describes the development of a module for calculating security zones in the cloud service of APCS modeling. A mathematical model based on graph theory is used. This allows you to describe access relationships between objects and security policy subjects. A comparative analysis of algorithms for traversing graph vertices is performed in order to select a suitable method for allocating security zones. The implemented algorithm for calculating security zones was added to the cloud service omole.ws.
Gillen, R. E., Carter, J. M., Craig, C., Johnson, J. A., Scott, S. L..  2020.  Assessing Anomaly-Based Intrusion Detection Configurations for Industrial Control Systems. 2020 IEEE 21st International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM). :360—366.

To reduce cost and ease maintenance, industrial control systems (ICS) have adopted Ethernetbased interconnections that integrate operational technology (OT) systems with information technology (IT) networks. This integration has made these critical systems vulnerable to attack. Security solutions tailored to ICS environments are an active area of research. Anomalybased network intrusion detection systems are well-suited for these environments. Often these systems must be optimized for their specific environment. In prior work, we introduced a method for assessing the impact of various anomaly-based network IDS settings on security. This paper reviews the experimental outcomes when we applied our method to a full-scale ICS test bed using actual attacks. Our method provides new and valuable data to operators enabling more informed decisions about IDS configurations.

Stöckle, Patrick, Grobauer, Bernd, Pretschner, Alexander.  2020.  Automated Implementation of Windows-related Security-Configuration Guides. 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). :598—610.
Hardening is the process of configuring IT systems to ensure the security of the systems' components and data they process or store. The complexity of contemporary IT infrastructures, however, renders manual security hardening and maintenance a daunting task. In many organizations, security-configuration guides expressed in the SCAP (Security Content Automation Protocol) are used as a basis for hardening, but these guides by themselves provide no means for automatically implementing the required configurations. In this paper, we propose an approach to automatically extract the relevant information from publicly available security-configuration guides for Windows operating systems using natural language processing. In a second step, the extracted information is verified using the information of available settings stored in the Windows Administrative Template files, in which the majority of Windows configuration settings is defined. We show that our implementation of this approach can extract and implement 83% of the rules without any manual effort and 96% with minimal manual effort. Furthermore, we conduct a study with 12 state-of-the-art guides consisting of 2014 rules with automatic checks and show that our tooling can implement at least 97% of them correctly. We have thus significantly reduced the effort of securing systems based on existing security-configuration guides. In many organizations, security-configuration guides expressed in the SCAP (Security Content Automation Protocol) are used as a basis for hardening, but these guides by themselves provide no means for automatically implementing the required configurations. In this paper, we propose an approach to automatically extract the relevant information from publicly available security-configuration guides for Windows operating systems using natural language processing. In a second step, the extracted information is verified using the information of available settings stored in the Windows Administrative Template files, in which the majority of Windows configuration settings is defined. We show that our implementation of this approach can extract and implement 83% of the rules without any manual effort and 96% with minimal manual effort. Furthermore, we conduct a study with 12 state-of-the-art guides consisting of 2014 rules with automatic checks and show that our tooling can implement at least 97% of them correctly. We have thus significantly reduced the effort of securing systems based on existing security-configuration guides. In this paper, we propose an approach to automatically extract the relevant information from publicly available security-configuration guides for Windows operating systems using natural language processing. In a second step, the extracted information is verified using the information of available settings stored in the Windows Administrative Template files, in which the majority of Windows configuration settings is defined. We show that our implementation of this approach can extract and implement 83% of the rules without any manual effort and 96% with minimal manual effort. Furthermore, we conduct a study with 12 state-of-the-art guides consisting of 2014 rules with automatic checks and show that our tooling can implement at least 97% of them correctly. We have thus significantly reduced the effort of securing systems based on existing security-configuration guides. We show that our implementation of this approach can extract and implement 83% of the rules without any manual effort and 96% with minimal manual effort. Furthermore, we conduct a study with 12 state-of-the-art guides consisting of 2014 rules with automatic checks and show that our tooling can implement at least 97% of them correctly. We have thus significantly reduced the effort of securing systems based on existing security-configuration guides.
Kummerow, A., Monsalve, C., Rösch, D., Schäfer, K., Nicolai, S..  2020.  Cyber-physical data stream assessment incorporating Digital Twins in future power systems. 2020 International Conference on Smart Energy Systems and Technologies (SEST). :1—6.

Reliable and secure grid operations become more and more challenging in context of increasing IT/OT convergence and decreasing dynamic margins in today's power systems. To ensure the correct operation of monitoring and control functions in control centres, an intelligent assessment of the different information sources is necessary to provide a robust data source in case of critical physical events as well as cyber-attacks. Within this paper, a holistic data stream assessment methodology is proposed using an expert knowledge based cyber-physical situational awareness for different steady and transient system states. This approach goes beyond existing techniques by combining high-resolution PMU data with SCADA information as well as Digital Twin and AI based anomaly detection functionalities.

Guo, Y., Wang, B., Hughes, D., Lewis, M., Sycara, K..  2020.  Designing Context-Sensitive Norm Inverse Reinforcement Learning Framework for Norm-Compliant Autonomous Agents. 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). :618—625.

Human behaviors are often prohibited, or permitted by social norms. Therefore, if autonomous agents interact with humans, they also need to reason about various legal rules, social and ethical social norms, so they would be trusted and accepted by humans. Inverse Reinforcement Learning (IRL) can be used for the autonomous agents to learn social norm-compliant behavior via expert demonstrations. However, norms are context-sensitive, i.e. different norms get activated in different contexts. For example, the privacy norm is activated for a domestic robot entering a bathroom where a person may be present, whereas it is not activated for the robot entering the kitchen. Representing various contexts in the state space of the robot, as well as getting expert demonstrations under all possible tasks and contexts is extremely challenging. Inspired by recent work on Modularized Normative MDP (MNMDP) and early work on context-sensitive RL, we propose a new IRL framework, Context-Sensitive Norm IRL (CNIRL). CNIRL treats states and contexts separately, and assumes that the expert determines the priority of every possible norm in the environment, where each norm is associated with a distinct reward function. The agent chooses the action to maximize its cumulative rewards. We present the CNIRL model and show that its computational complexity is scalable in the number of norms. We also show via two experimental scenarios that CNIRL can handle problems with changing context spaces.

Sato, Y., Yanagitani, T..  2020.  Giga-hertz piezoelectric epitaxial PZT transducer for the application of fingerprint imaging. 2020 IEEE International Ultrasonics Symposium (IUS). :1—3.

The fingerprint sensor based on pMUTs was reported [1]. Spatial resolution of the image depends on the size of the acoustic source when a plane wave is used. If the size of the acoustic source is smaller, piezoelectric films with high dielectric constant are required. In this study, in order to obtain small acoustic source, we proposed Pb(Zrx Th-x)O3 (PZT) epitaxial transducers with high dielectric constant. PbTiO3 (PTO) epitaxial films were grown on conductive La-SrTiO3 (STO) substrate by RF magnetron sputtering. Longitudinal wave conversion loss of PTO transducers was measured by a network analyzer. The thermoplastic elastomer was used instead of real fingerprint. We confirmed that conversion loss of piezoelectric film/substrate structure was increased by contacting the elastomer due the change of reflection coefficient of the substrate bottom/elastomer interface. Minimum conversion loss images were obtained by mechanically scanning the soft probe on the transducer surface. We achieved the detection of the fingerprint phantom based on the elastomer in the GHz.

Mavroudis, V., Svenda, P..  2020.  JCMathLib: Wrapper Cryptographic Library for Transparent and Certifiable JavaCard Applets. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :89—96.

The JavaCard multi-application platform is now deployed to over twenty billion smartcards, used in various applications ranging from banking payments and authentication tokens to SIM cards and electronic documents. In most of those use cases, access to various cryptographic primitives is required. The standard JavaCard API provides a basic level of access to such functionality (e.g., RSA encryption) but does not expose low-level cryptographic primitives (e.g., elliptic curve operations) and essential data types (e.g., Integers). Developers can access such features only through proprietary, manufacturer-specific APIs. Unfortunately, such APIs significantly reduce the interoperability and certification transparency of the software produced as they require non-disclosure agreements (NDA) that prohibit public sharing of the applet's source code.We introduce JCMathLib, an open library that provides an intermediate layer realizing essential data types and low-level cryptographic primitives from high-level operations. To achieve this, we introduce a series of optimization techniques for resource-constrained platforms that make optimal use of the underlying hardware, while having a small memory footprint. To the best of our knowledge, it is the first generic library for low-level cryptographic operations in JavaCards that does not rely on a proprietary API.Without any disclosure limitations, JCMathLib has the potential to increase transparency by enabling open code sharing, release of research prototypes, and public code audits. Moreover, JCMathLib can help resolve the conflict between strict open-source licenses such as GPL and proprietary APIs available only under an NDA. This is of particular importance due to the introduction of JavaCard API v3.1, which targets specifically IoT devices, where open-source development might be more common than in the relatively closed world of government-issued electronic documents.

Volkov, A. I., Semin, V. G., Khakimullin, E. R..  2020.  Modeling the Structures of Threats to Information Security Risks based on a Fuzzy Approach. 2020 International Conference Quality Management, Transport and Information Security, Information Technologies (IT QM IS). :132—135.

The article deals with the development and implementation of a method for synthesizing structures of threats and risks to information security based on a fuzzy approach. We consider a method for modeling threat structures based on structural abstractions: aggregation, generalization, and Association. It is shown that the considered forms of structural abstractions allow implementing the processes of Ascending and Descending inheritance. characteristics of the threats. A database of fuzzy rules based on procedural abstractions has been developed and implemented in the fuzzy logic tool environment Fussy Logic.

Staschulat, J., Lütkebohle, I., Lange, R..  2020.  The rclc Executor: Domain-specific deterministic scheduling mechanisms for ROS applications on microcontrollers: work-in-progress. 2020 International Conference on Embedded Software (EMSOFT). :18—19.

Robots are networks of a variety of computing devices, such as powerful computing platforms but also tiny microcontrollers. The Robot Operating System (ROS) is the dominant framework for powerful computing devices. While ROS version 2 adds important features like quality of service and security, it cannot be directly applied to microcontrollers because of its large memory footprint. The micro-ROS project has ported the ROS 2 API to microcontrollers. However, the standard ROS 2 concepts are not enough for real-time performance: In the ROS 2 release “Foxy”, the standard ROS 2 Executor, which is the central component responsible for handling timers and incoming message data, is neither real-time capable nor deterministic. Domain-specific requirements of mobile robots, like sense-plan-act control loops, cannot be addressed with the standard ROS 2 Executor. In this paper, we present an advanced Executor for the ROS 2 C API which provides deterministic scheduling and supports domain-specific requirements. A proof-of-concept is demonstrated on a 32-bit microcontroller.

Čečil, Roman, Šetka, Vlastimil, Tolar, David, Sikora, Axel.  2020.  RETIS – Real-Time Sensitive Wireless Communication Solution for Industrial Control Applications. 2020 IEEE 5th International Symposium on Smart and Wireless Systems within the Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS). :1—9.
Ultra-Reliable Low Latency Communications (URLLC) has been always a vital component of many industrial applications. The paper proposes a new wireless URLLC solution called RETIS, which is suitable for factory automation and fast process control applications, where low latency, low jitter, and high data exchange rates are mandatory. In the paper, we describe the communication protocol as well as the hardware structure of the network nodes for implementing the required functionality. Many techniques enabling fast, reliable wireless transmissions are used - short Transmission Time Interval (TTI), TimeDivision Multiple Access (TDMA), MIMO, optional duplicated data transfer, Forward Error Correction (FEC), ACK mechanism. Preliminary tests show that reliable endto-end latency down to 350 μs and packet exchange rate up to 4 kHz can be reached (using quadruple MIMO and standard IEEE 802.15.4 PHY at 250 kbit/s).
Shere, A. R. K., Nurse, J. R. C., Flechais, I..  2020.  "Security should be there by default": Investigating how journalists perceive and respond to risks from the Internet of Things. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :240—249.
Journalists have long been the targets of both physical and cyber-attacks from well-resourced adversaries. Internet of Things (IoT) devices are arguably a new avenue of threat towards journalists through both targeted and generalised cyber-physical exploitation. This study comprises three parts: First, we interviewed 11 journalists and surveyed 5 further journalists, to determine the extent to which journalists perceive threats through the IoT, particularly via consumer IoT devices. Second, we surveyed 34 cyber security experts to establish if and how lay-people can combat IoT threats. Third, we compared these findings to assess journalists' knowledge of threats, and whether their protective mechanisms would be effective against experts' depictions and predictions of IoT threats. Our results indicate that journalists generally are unaware of IoT-related risks and are not adequately protecting themselves; this considers cases where they possess IoT devices, or where they enter IoT-enabled environments (e.g., at work or home). Expert recommendations spanned both immediate and longterm mitigation methods, including practical actions that are technical and socio-political in nature. However, all proposed individual mitigation methods are likely to be short-term solutions, with 26 of 34 (76.5%) of cyber security experts responding that within the next five years it will not be possible for the public to opt-out of interaction with the IoT.
Sharma, Prince, Shukla, Shailendra, Vasudeva, Amol.  2020.  Trust-based Incentive for Mobile Offloaders in Opportunistic Networks. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :872—877.
Mobile data offloading using opportunistic network has recently gained its significance to increase mobile data needs. Such offloaders need to be properly incentivized to encourage more and more users to act as helpers in such networks. The extent of help offered by mobile data offloading alternatives using appropriate incentive mechanisms is significant in such scenarios. The limitation of existing incentive mechanisms is that they are partial in implementation while most of them use third party intervention based derivation. However, none of the papers considers trust as an essential factor for incentive distribution. Although few works contribute to the trust analysis, but the implementation is limited to offloading determination only while the incentive is independent of trust. We try to investigate if trust could be related to the Nash equilibrium based incentive evaluation. Our analysis results show that trust-based incentive distribution encourages more than 50% offloaders to act positively and contribute successfully towards efficient mobile data offloading. We compare the performance of our algorithm with literature based salary-bonus scheme implementation and get optimum incentive beyond 20% dependence over trust-based output.
Schaerer, Jakob, Zumbrunn, Severin, Braun, Torsten.  2020.  Veritaa - The Graph of Trust. 2020 2nd Conference on Blockchain Research Applications for Innovative Networks and Services (BRAINS). :168—175.

Today the integrity of digital documents and the authenticity of their origin is often hard to verify. Existing Public Key Infrastructures (PKIs) are capable of certifying digital identities but do not provide solutions to immutably store signatures, and the process of certification is often not transparent. In this work we propose Veritaa, a Distributed Public Key Infrastructure and Signature Store (DPKISS). The major innovation of Veritaa is the Graph of Trust, a directed graph that uses relations between identity claims to certify the identities and stores signed relations to digital document identifiers. The distributed architecture of Veritaa and the Graph of Trust enables a transparent certification process. To ensure non-repudiation and immutability of all actions that have been signed on the Graph of Trust, an application specific Distributed Ledger Technology (DLT) is used as secure storage. In this work a reference implementation of the proposed architecture was designed and implemented. Furthermore, a testbed was created and used for the evaluation of Veritaa. The evaluation of Veritaa shows the benefits and the high performance of the proposed architecture.

Johnson, N., Near, J. P., Hellerstein, J. M., Song, D..  2020.  Chorus: a Programming Framework for Building Scalable Differential Privacy Mechanisms. 2020 IEEE European Symposium on Security and Privacy (EuroS P). :535–551.
Differential privacy is fast becoming the gold standard in enabling statistical analysis of data while protecting the privacy of individuals. However, practical use of differential privacy still lags behind research progress because research prototypes cannot satisfy the scalability requirements of production deployments. To address this challenge, we present Chorus, a framework for building scalable differential privacy mechanisms which is based on cooperation between the mechanism itself and a high-performance production database management system (DBMS). We demonstrate the use of Chorus to build the first highly scalable implementations of complex mechanisms like Weighted PINQ, MWEM, and the matrix mechanism. We report on our experience deploying Chorus at Uber, and evaluate its scalability on real-world queries.
Pialov, K., Slutsky, R., Maizel, A..  2020.  Coupled calculation of hydrodynamic and acoustic characteristics in the far-field of the ship propulsor. 2020 International Conference on Dynamics and Vibroacoustics of Machines (DVM). :1–6.
This report provides a calculation example of hydrodynamic and acoustic characteristics of the ship propulsor using numerical modelling with the help of RANS-models and eddy-resolving approaches in the hydrodynamics task, acoustic analogy in the acoustics tasks and harmonic analysis of the propulsor under hydrodynamic loads.
Başkaya, D., Samet, R..  2020.  DDoS Attacks Detection by Using Machine Learning Methods on Online Systems. 2020 5th International Conference on Computer Science and Engineering (UBMK). :52—57.
DDoS attacks impose serious threats to many large or small organizations; therefore DDoS attacks have to be detected as soon as possible. In this study, a methodology to detect DDoS attacks is proposed and implemented on online systems. In the scope of the proposed methodology, Multi Layer Perceptron (MLP), Random Forest (RF), K-Nearest Neighbor (KNN), C-Support Vector Machine (SVC) machine learning methods are used with scaling and feature reduction preprocessing methods and then effects of preprocesses on detection accuracy rates of HTTP (Hypertext Transfer Protocol) flood, TCP SYN (Transport Control Protocol Synchronize) flood, UDP (User Datagram Protocol) flood and ICMP (Internet Control Message Protocol) flood DDoS attacks are analyzed. Obtained results showed that DDoS attacks can be detected with high accuracy of 99.2%.
Sun, Yixin, Jee, Kangkook, Sivakorn, Suphannee, Li, Zhichun, Lumezanu, Cristian, Korts-Parn, Lauri, Wu, Zhenyu, Rhee, Junghwan, Kim, Chung Hwan, Chiang, Mung et al..  2020.  Detecting Malware Injection with Program-DNS Behavior. 2020 IEEE European Symposium on Security and Privacy (EuroS P). :552–568.
Analyzing the DNS traffic of Internet hosts has been a successful technique to counter cyberattacks and identify connections to malicious domains. However, recent stealthy attacks hide malicious activities within seemingly legitimate connections to popular web services made by benign programs. Traditional DNS monitoring and signature-based detection techniques are ineffective against such attacks. To tackle this challenge, we present a new program-level approach that can effectively detect such stealthy attacks. Our method builds a fine-grained Program-DNS profile for each benign program that characterizes what should be the “expected” DNS behavior. We find that malware-injected processes have DNS activities which significantly deviate from the Program-DNS profile of the benign program. We then develop six novel features based on the Program-DNS profile, and evaluate the features on a dataset of over 130 million DNS requests collected from a real-world enterprise and 8 million requests from malware-samples executed in a sandbox environment. We compare our detection results with that of previously-proposed features and demonstrate that our new features successfully detect 190 malware-injected processes which fail to be detected by previously-proposed features. Overall, our study demonstrates that fine-grained Program-DNS profiles can provide meaningful and effective features in building detectors for attack campaigns that bypass existing detection systems.
Usman, S., Winarno, I., Sudarsono, A..  2020.  Implementation of SDN-based IDS to protect Virtualization Server against HTTP DoS attacks. 2020 International Electronics Symposium (IES). :195—198.
Virtualization and Software-defined Networking (SDN) are emerging technologies that play a major role in cloud computing. Cloud computing provides efficient utilization, high performance, and resource availability on demand. However, virtualization environments are vulnerable to various types of intrusion attacks that involve installing malicious software and denial of services (DoS) attacks. Utilizing SDN technology, makes the idea of SDN-based security applications attractive in the fight against DoS attacks. Network intrusion detection system (IDS) which is used to perform network traffic analysis as a detection system implemented on SDN networks to protect virtualization servers from HTTP DoS attacks. The experimental results show that SDN-based IDS is able to detect and mitigate HTTP DoS attacks effectively.