Visible to the public Biblio

Found 736 results

Filters: First Letter Of Last Name is V  [Clear All Filters]
2020
Susukailo, Vitalii, Opirskyy, Ivan, Vasylyshyn, Sviatoslav.  2020.  Analysis of the attack vectors used by threat actors during the pandemic. 2020 IEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT). 2:261—264.

This article describes attacks methods, vectors and technics used by threat actors during pandemic situations in the world. Identifies common targets of threat actors and cyber-attack tactics. The article analyzes cybersecurity challenges and specifies possible solutions and improvements in cybersecurity. Defines cybersecurity controls, which should be taken against analyzed attack vectors.

Elavarasan, G., Veni, S..  2020.  Data Sharing Attribute-Based Secure with Efficient Revocation in Cloud Computing. 2020 International Conference on Computing and Information Technology (ICCIT-1441). :1—6.

In recent days, cloud computing is one of the emerging fields. It is a platform to maintain the data and privacy of the users. To process and regulate the data with high security, the access control methods are used. The cloud environment always faces several challenges such as robustness, security issues and so on. Conventional methods like Cipher text-Policy Attribute-Based Encryption (CP-ABE) are reflected in providing huge security, but still, the problem exists like the non-existence of attribute revocation and minimum efficient. Hence, this research work particularly on the attribute-based mechanism to maximize efficiency. Initially, an objective coined out in this work is to define the attributes for a set of users. Secondly, the data is to be re-encrypted based on the access policies defined for the particular file. The re-encryption process renders information to the cloud server for verifying the authenticity of the user even though the owner is offline. The main advantage of this work evaluates multiple attributes and allows respective users who possess those attributes to access the data. The result proves that the proposed Data sharing scheme helps for Revocation under a fine-grained attribute structure.

Gaber, C., Vilchez, J. S., Gür, G., Chopin, M., Perrot, N., Grimault, J.-L., Wary, J.-P..  2020.  Liability-Aware Security Management for 5G. 2020 IEEE 3rd 5G World Forum (5GWF). :133—138.

Multi-party and multi-layer nature of 5G networks implies the inherent distribution of management and orchestration decisions across multiple entities. Therefore, responsibility for management decisions concerning end-to-end services become blurred if no efficient liability and accountability mechanism is used. In this paper, we present the design, building blocks and challenges of a Liability-Aware Security Management (LASM) system for 5G. We describe how existing security concepts such as manifests and Security-by-Contract, root cause analysis, remote attestation, proof of transit, and trust and reputation models can be composed and enhanced to take risk and responsibilities into account for security and liability management.

Volkov, A. I., Semin, V. G., Khakimullin, E. R..  2020.  Modeling the Structures of Threats to Information Security Risks based on a Fuzzy Approach. 2020 International Conference Quality Management, Transport and Information Security, Information Technologies (IT QM IS). :132—135.

The article deals with the development and implementation of a method for synthesizing structures of threats and risks to information security based on a fuzzy approach. We consider a method for modeling threat structures based on structural abstractions: aggregation, generalization, and Association. It is shown that the considered forms of structural abstractions allow implementing the processes of Ascending and Descending inheritance. characteristics of the threats. A database of fuzzy rules based on procedural abstractions has been developed and implemented in the fuzzy logic tool environment Fussy Logic.

Lyons, J. B., Nam, C. S., Jessup, S. A., Vo, T. Q., Wynne, K. T..  2020.  The Role of Individual Differences as Predictors of Trust in Autonomous Security Robots. 2020 IEEE International Conference on Human-Machine Systems (ICHMS). :1—5.

This research used an Autonomous Security Robot (ASR) scenario to examine public reactions to a robot that possesses the authority and capability to inflict harm on a human. Individual differences in terms of personality and Perfect Automation Schema (PAS) were examined as predictors of trust in the ASR. Participants (N=316) from Amazon Mechanical Turk (MTurk) rated their trust of the ASR and desire to use ASRs in public and military contexts following a 2-minute video depicting the robot interacting with three research confederates. The video showed the robot using force against one of the three confederates with a non-lethal device. Results demonstrated that individual differences factors were related to trust and desired use of the ASR. Agreeableness and both facets of the PAS (high expectations and all-or-none beliefs) demonstrated unique associations with trust using multiple regression techniques. Agreeableness, intellect, and high expectations were uniquely related to desired use for both public and military domains. This study showed that individual differences influence trust and one's desired use of ASRs, demonstrating that societal reactions to ASRs may be subject to variation among individuals.

Purohit, S., Calyam, P., Wang, S., Yempalla, R., Varghese, J..  2020.  DefenseChain: Consortium Blockchain for Cyber Threat Intelligence Sharing and Defense. 2020 2nd Conference on Blockchain Research Applications for Innovative Networks and Services (BRAINS). :112—119.
Cloud-hosted applications are prone to targeted attacks such as DDoS, advanced persistent threats, cryptojacking which threaten service availability. Recently, methods for threat information sharing and defense require co-operation and trust between multiple domains/entities. There is a need for mechanisms that establish distributed trust to allow for such a collective defense. In this paper, we present a novel threat intelligence sharing and defense system, namely “DefenseChain”, to allow organizations to have incentive-based and trustworthy co-operation to mitigate the impact of cyber attacks. Our solution approach features a consortium Blockchain platform to obtain threat data and select suitable peers to help with attack detection and mitigation. We propose an economic model for creation and sustenance of the consortium with peers through a reputation estimation scheme that uses `Quality of Detection' and `Quality of Mitigation' metrics. Our evaluation experiments with DefenseChain implementation are performed on an Open Cloud testbed with Hyperledger Composer and in a simulation environment. Our results show that the DefenseChain system overall performs better than state-of-the-art decision making schemes in choosing the most appropriate detector and mitigator peers. In addition, we show that our DefenseChain achieves better performance trade-offs in terms of metrics such as detection time, mitigation time and attack reoccurence rate. Lastly, our validation results demonstrate that our DefenseChain can effectively identify rational/irrational service providers.
Simon, L., Verma, A..  2020.  Improving Fuzzing through Controlled Compilation. 2020 IEEE European Symposium on Security and Privacy (EuroS P). :34–52.
We observe that operations performed by standard compilers harm fuzzing because the optimizations and the Intermediate Representation (IR) lead to transformations that improve execution speed at the expense of fuzzing. To remedy this problem, we propose `controlled compilation', a set of techniques to automatically re-factor a program's source code and cherry pick beneficial compiler optimizations to improve fuzzing. We design, implement and evaluate controlled compilation by building a new toolchain with Clang/LLVM. We perform an evaluation on 10 open source projects and compare the results of AFL to state-of-the-art grey-box fuzzers and concolic fuzzers. We show that when programs are compiled with this new toolchain, AFL covers 30 % new code on average and finds 21 additional bugs in real world programs. Our study reveals that controlled compilation often covers more code and finds more bugs than state-of-the-art fuzzing techniques, without the need to write a fuzzer from scratch or resort to advanced techniques. We identify two main reasons to explain why. First, it has proven difficult for researchers to appropriately configure existing fuzzers such as AFL. To address this problem, we provide guidelines and new LLVM passes to help automate AFL's configuration. This will enable researchers to perform a fairer comparison with AFL. Second, we find that current coverage-based evaluation measures (e.g. the total number of visited lines, edges or BBs) are inadequate because they lose valuable information such as which parts of a program a fuzzer actually visits and how consistently it does so. Coverage is considered a useful metric to evaluate a fuzzer's performance and devise a fuzzing strategy. However, the lack of a standard methodology for evaluating coverage remains a problem. To address this, we propose a rigorous evaluation methodology based on `qualitative coverage'. Qualitative coverage uniquely identifies each program line to help understand which lines are commonly visited by different fuzzers vs. which lines are visited only by a particular fuzzer. Throughout our study, we show the benefits of this new evaluation methodology. For example we provide valuable insights into the consistency of fuzzers, i.e. their ability to cover the same code or find the same bug across multiple independent runs. Overall, our evaluation methodology based on qualitative coverage helps to understand if a fuzzer performs better, worse, or is complementary to another fuzzer. This helps security practitioners adjust their fuzzing strategies.
Muñoz, C. M. Blanco, Cruz, F. Gómez, Valero, J. S. Jimenez.  2020.  Software architecture for the application of facial recognition techniques through IoT devices. 2020 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI). :1–5.

The facial recognition time by time takes more importance, due to the extend kind of applications it has, but it is still challenging when faces big variations in the characteristics of the biometric data used in the process and especially referring to the transportation of information through the internet in the internet of things context. Based on the systematic review and rigorous study that supports the extraction of the most relevant information on this topic [1], a software architecture proposal which contains basic security requirements necessary for the treatment of the data involved in the application of facial recognition techniques, oriented to an IoT environment was generated. Concluding that the security and privacy considerations of the information registered in IoT devices represent a challenge and it is a priority to be able to guarantee that the data circulating on the network are only accessible to the user that was designed for this.

Bulle, Bruno B., Santin, Altair O., Viegas, Eduardo K., dos Santos, Roger R..  2020.  A Host-based Intrusion Detection Model Based on OS Diversity for SCADA. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. :691—696.

Supervisory Control and Data Acquisition (SCADA) systems have been a frequent target of cyberattacks in Industrial Control Systems (ICS). As such systems are a frequent target of highly motivated attackers, researchers often resort to intrusion detection through machine learning techniques to detect new kinds of threats. However, current research initiatives, in general, pursue higher detection accuracies, neglecting the detection of new kind of threats and their proposal detection scope. This paper proposes a novel, reliable host-based intrusion detection for SCADA systems through the Operating System (OS) diversity. Our proposal evaluates, at the OS level, the SCADA communication over time and, opportunistically, detects, and chooses the most appropriate OS to be used in intrusion detection for reliability purposes. Experiments, performed through a variety of SCADA OSs front-end, shows that OS diversity provides higher intrusion detection scope, improving detection accuracy by up to 8 new attack categories. Besides, our proposal can opportunistically detect the most reliable OS that should be used for the current environment behavior, improving by up to 8%, on average, the system accuracy when compared to a single OS approach, in the best case.

Bogdan-Iulian, C., Vasilică-Gabriel, S., Alexandru, M. D., Nicolae, G., Andrei, V..  2020.  Improved Secure Internet of Things System using Web Services and Low Power Single-board Computers. 2020 International Conference on e-Health and Bioengineering (EHB). :1—5.

Internet of Things (IoT) systems are becoming widely used, which makes them to be a high-value target for both hackers and crackers. From gaining access to sensitive information to using them as bots for complex attacks, the variety of advantages after exploiting different security vulnerabilities makes the security of IoT devices to be one of the most challenging desideratum for cyber security experts. In this paper, we will propose a new IoT system, designed to ensure five data principles: confidentiality, integrity, availability, authentication and authorization. The innovative aspects are both the usage of a web-based communication and a custom dynamic data request structure.

Chalkiadakis, Nikolaos, Deyannis, Dimitris, Karnikis, Dimitris, Vasiliadis, Giorgos, Ioannidis, Sotiris.  2020.  The Million Dollar Handshake: Secure and Attested Communications in the Cloud. 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). :63—70.

The number of applications and services that are hosted on cloud platforms is constantly increasing. Nowadays, more and more applications are hosted as services on cloud platforms, co-existing with other services in a mutually untrusted environment. Facilities such as virtual machines, containers and encrypted communication channels aim to offer isolation between the various applications and protect sensitive user data. However, such techniques are not always able to provide a secure execution environment for sensitive applications nor they offer guarantees that data are not monitored by an honest but curious provider once they reach the cloud infrastructure. The recent advancements of trusted execution environments within commodity processors, such as Intel SGX, provide a secure reverse sandbox, where code and data are isolated even from the underlying operating system. Moreover, Intel SGX provides a remote attestation mechanism, allowing the communicating parties to verify their identity as well as prove that code is executed on hardware-assisted software enclaves. Many approaches try to ensure code and data integrity, as well as enforce channel encryption schemes such as TLS, however, these techniques are not enough to achieve complete isolation and secure communications without hardware assistance or are not efficient in terms of performance. In this work, we design and implement a practical attestation system that allows the service provider to offer a seamless attestation service between the hosted applications and the end clients. Furthermore, we implement a novel caching system that is capable to eliminate the latencies introduced by the remote attestation process. Our approach allows the parties to attest one another before each communication attempt, with improved performance when compared to a standard TLS handshake.

Vimercati, S. de Capitani di, Foresti, S., Paraboschi, S., Samarati, P..  2020.  Enforcing Corporate Governance's Internal Controls and Audit in the Cloud. 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). :453–461.
More and more organizations are today using the cloud for their business as a quite convenient alternative to in-house solutions for storing, processing, and managing data. Cloud-based solutions are then permeating almost all aspects of business organizations, resulting appealing also for functions that, already in-house, may result sensitive or security critical, and whose enforcement in the cloud requires then particular care. In this paper, we provide an approach for securely relying on cloud-based services for the enforcement of Internal Controls and Audit (ICA) functions for corporate governance. Our approach is based on the use of selective encryption and of tags to provide a level of self-protection to data and for enabling only authorized parties to access data and perform operations on them, providing privacy and integrity guarantees, as well as accountability and non-repudiation.
Valocký, F., Puchalik, M., Orgon, M..  2020.  Implementing Asymmetric Cryptography in High-Speed Data Transmission over Power Line. 2020 11th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0849–0854.
The article presents a proposal for implementing asymmetric cryptography, specifically the elliptic curves for the protection of high-speed data transmission in a corporate network created on the platform of PLC (Power Line Communications). The solution uses an open-source software library OpenSSL. As part of the design, an experimental workplace was set up, a DHCP and FTP server was established. The possibility of encryption with the selected own elliptic curve from the OpenSSL library was tested so that key pairs (public and private keys) were generated using a software tool. A shared secret was created between communication participants and subsequently, data encryption and decryption were performed.
Giannoutakis, K. M., Spathoulas, G., Filelis-Papadopoulos, C. K., Collen, A., Anagnostopoulos, M., Votis, K., Nijdam, N. A..  2020.  A Blockchain Solution for Enhancing Cybersecurity Defence of IoT. 2020 IEEE International Conference on Blockchain (Blockchain). :490—495.

The growth of IoT devices during the last decade has led to the development of smart ecosystems, such as smart homes, prone to cyberattacks. Traditional security methodologies support to some extend the requirement for preserving privacy and security of such deployments, but their centralized nature in conjunction with low computational capabilities of smart home gateways make such approaches not efficient. Last achievements on blockchain technologies allowed the use of such decentralized architectures to support cybersecurity defence mechanisms. In this work, a blockchain framework is presented to support the cybersecurity mechanisms of smart homes installations, focusing on the immutability of users and devices that constitute such environments. The proposed methodology provides also the appropriate smart contracts support for ensuring the integrity of the smart home gateway and IoT devices, as well as the dynamic and immutable management of blocked malicious IPs. The framework has been deployed on a real smart home environment demonstrating its applicability and efficiency.

Vishwakarma, L., Das, D..  2020.  BSS: Blockchain Enabled Security System for Internet of Things Applications. 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA). :1—4.

In the Internet of Things (IoT), devices can interconnect and communicate autonomously, which requires devices to authenticate each other to exchange meaningful information. Otherwise, these things become vulnerable to various attacks. The conventional security protocols are not suitable for IoT applications due to the high computation and storage demand. Therefore, we proposed a blockchain-enabled secure storage and communication scheme for IoT applications, called BSS. The scheme ensures identification, authentication, and data integrity. Our scheme uses the security advantages of blockchain and helps to create safe zones (trust batch) where authenticated objects interconnect securely and do communication. A secure and robust trust mechanism is employed to build these batches, where each device has to authenticate itself before joining the trust batch. The obtained results satisfy the IoT security requirements with 60% reduced computation, storage and communication cost compared with state-of-the-art schemes. BSS also withstands various cyberattacks such as impersonation, message replay, man-in-the-middle, and botnet attacks.

Moslemi, Ramin, Davoodi, Mohammadreza, Velni, Javad Mohammadpour.  2020.  A Distributed Approach for Estimation of Information Matrix in Smart Grids and its Application for Anomaly Detection. 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1—7.

Statistical structure learning (SSL)-based approaches have been employed in the recent years to detect different types of anomalies in a variety of cyber-physical systems (CPS). Although these approaches outperform conventional methods in the literature, their computational complexity, need for large number of measurements and centralized computations have limited their applicability to large-scale networks. In this work, we propose a distributed, multi-agent maximum likelihood (ML) approach to detect anomalies in smart grid applications aiming at reducing computational complexity, as well as preserving data privacy among different players in the network. The proposed multi-agent detector breaks the original ML problem into several local (smaller) ML optimization problems coupled by the alternating direction method of multipliers (ADMM). Then, these local ML problems are solved by their corresponding agents, eventually resulting in the construction of the global solution (network's information matrix). The numerical results obtained from two IEEE test (power transmission) systems confirm the accuracy and efficiency of the proposed approach for anomaly detection.

Gamba, J., Rashed, M., Razaghpanah, A., Tapiador, J., Vallina-Rodriguez, N..  2020.  An Analysis of Pre-installed Android Software. 2020 IEEE Symposium on Security and Privacy (SP). :1039—1055.

The open-source nature of the Android OS makes it possible for manufacturers to ship custom versions of the OS along with a set of pre-installed apps, often for product differentiation. Some device vendors have recently come under scrutiny for potentially invasive private data collection practices and other potentially harmful or unwanted behavior of the preinstalled apps on their devices. Yet, the landscape of preinstalled software in Android has largely remained unexplored, particularly in terms of the security and privacy implications of such customizations. In this paper, we present the first large- scale study of pre-installed software on Android devices from more than 200 vendors. Our work relies on a large dataset of real-world Android firmware acquired worldwide using crowd-sourcing methods. This allows us to answer questions related to the stakeholders involved in the supply chain, from device manufacturers and mobile network operators to third- party organizations like advertising and tracking services, and social network platforms. Our study allows us to also uncover relationships between these actors, which seem to revolve primarily around advertising and data-driven services. Overall, the supply chain around Android's open source model lacks transparency and has facilitated potentially harmful behaviors and backdoored access to sensitive data and services without user consent or awareness. We conclude the paper with recommendations to improve transparency, attribution, and accountability in the Android ecosystem.

Makovetskii, A., Kober, V., Voronin, A., Zhernov, D..  2020.  Facial recognition and 3D non-rigid registration. 2020 International Conference on Information Technology and Nanotechnology (ITNT). :1—4.

One of the most efficient tool for human face recognition is neural networks. However, the result of recognition can be spoiled by facial expressions and other deviation from the canonical face representation. In this paper, we propose a resampling method of human faces represented by 3D point clouds. The method is based on a non-rigid Iterative Closest Point (ICP) algorithm. To improve the facial recognition performance, we use a combination of the proposed method and convolutional neural network (CNN). Computer simulation results are provided to illustrate the performance of the proposed method.

Tran, M., Choi, I., Moon, G. J., Vu, A. V., Kang, M. S..  2020.  A Stealthier Partitioning Attack against Bitcoin Peer-to-Peer Network. 2020 IEEE Symposium on Security and Privacy (SP). :894—909.

Network adversaries, such as malicious transit autonomous systems (ASes), have been shown to be capable of partitioning the Bitcoin's peer-to-peer network via routing-level attacks; e.g., a network adversary exploits a BGP vulnerability and performs a prefix hijacking attack (viz. Apostolaki et al. [3]). Due to the nature of BGP operation, such a hijacking is globally observable and thus enables immediate detection of the attack and the identification of the perpetrator. In this paper, we present a stealthier attack, which we call the EREBUS attack, that partitions the Bitcoin network without any routing manipulations, which makes the attack undetectable to control-plane and even to data-plane detectors. The novel aspect of EREBUS is that it makes the adversary AS a natural man-in-the-middle network of all the peer connections of one or more targeted Bitcoin nodes by patiently influencing the targeted nodes' peering decision. We show that affecting the peering decision of a Bitcoin node, which is believed to be infeasible after a series of bug patches against the earlier Eclipse attack [29], is possible for the network adversary that can use abundant network address resources (e.g., spoofing millions of IP addresses in many other ASes) reliably for an extended period of time at a negligible cost. The EREBUS attack is readily available for large ASes, such as Tier-1 and large Tier-2 ASes, against the vast majority of 10K public Bitcoin nodes with only about 520 bit/s of attack traffic rate per targeted Bitcoin node and a modest (e.g., 5-6 weeks) attack execution period. The EREBUS attack can be mounted by nation-state adversaries who would be willing to execute sophisticated attack strategies patiently to compromise cryptocurrencies (e.g., control the consensus, take down a cryptocurrency, censor transactions). As the attack exploits the topological advantage of being a network adversary but not the specific vulnerabilities of Bitcoin core, no quick patches seem to be available. We discuss that some naive solutions (e.g., whitelisting, rate-limiting) are ineffective and third-party proxy solutions may worsen the Bitcoin's centralization problem. We provide some suggested modifications to the Bitcoin core and show that they effectively make the EREBUS attack significantly harder; yet, their non-trivial changes to the Bitcoin's network operation (e.g., peering dynamics, propagation delays) should be examined thoroughly before their wide deployment.

Balestrieri, E., Vito, L. D., Picariello, F., Rapuano, S., Tudosa, I..  2020.  A TDoA-based Measurement Method for RF Emitters Localization by Exploiting Wideband Compressive Sampling. 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). :1–6.
This paper proposes a Time Difference of Arrival (TDoA) based method for the localization of Radio Frequency (RF) emitters working at different carriers, by using wideband spectrum sensors exploiting compressive sampling. The proposed measurement method is based on four or more RF receivers, with known Cartesian positions, performing non uniform sampling on the received signal. By means of simulations, the method has been compared against a localization method adopting RF receivers performing uniform sampling at Nyquist rate. The obtained preliminary results demonstrate that the method is capable of localizing two RF emitters achieving the same results obtained with uniform sampling, with a compression ratio up to CR = 20.
Venkataramana, B., Jadhav, A..  2020.  Performance Evaluation of Routing Protocols under Black Hole Attack in Cognitive Radio Mesh Network. 2020 International Conference on Emerging Smart Computing and Informatics (ESCI). :98–102.
Wireless technology is rapidly proliferating. Devices such as Laptops, PDAs and cell-phones gained a lot of importance due to the use of wireless technology. Nowadays there is also a huge demand for spectrum allocation and there is a need to utilize the maximum available spectrum in efficient manner. Cognitive Radio (CR) Network is one such intelligent radio network, designed to utilize the maximum licensed bandwidth to un-licensed users. Cognitive Radio has the capability to understand unused spectrum at a given time at a specific location. This capability helps to minimize the interference to the licensed users and improves the performance of the network. Routing protocol selection is one of the main strategies to design any wireless or wired networks. In Cognitive radio networks the selected routing protocol should be best in terms of establishing an efficient route, addressing challenges in network topology and should be able to reduce bandwidth consumption. Performance analysis of the protocols helps to select the best protocol in the network. Objective of this study is to evaluate performance of various cognitive radio network routing protocols like Spectrum Aware On Demand Routing Protocol (SORP), Spectrum Aware Mesh Routing in Cognitive Radio Networks (SAMER) and Dynamic Source Routing (DSR) with and without black hole attack using various performance parameters like Throughput, E2E delay and Packet delivery ratio with the help of NS2 simulator.
Fejrskov, M., Pedersen, J. M., Vasilomanolakis, E..  2020.  Cyber-security research by ISPs: A NetFlow and DNS Anonymization Policy. :1—8.

Internet Service Providers (ISPs) have an economic and operational interest in detecting malicious network activity relating to their subscribers. However, it is unclear what kind of traffic data an ISP has available for cyber-security research, and under which legal conditions it can be used. This paper gives an overview of the challenges posed by legislation and of the data sources available to a European ISP. DNS and NetFlow logs are identified as relevant data sources and the state of the art in anonymization and fingerprinting techniques is discussed. Based on legislation, data availability and privacy considerations, a practically applicable anonymization policy is presented.

Pham, L. H., Albanese, M., Chadha, R., Chiang, C.-Y. J., Venkatesan, S., Kamhoua, C., Leslie, N..  2020.  A Quantitative Framework to Model Reconnaissance by Stealthy Attackers and Support Deception-Based Defenses. :1—9.

In recent years, persistent cyber adversaries have developed increasingly sophisticated techniques to evade detection. Once adversaries have established a foothold within the target network, using seemingly-limited passive reconnaissance techniques, they can develop significant network reconnaissance capabilities. Cyber deception has been recognized as a critical capability to defend against such adversaries, but, without an accurate model of the adversary's reconnaissance behavior, current approaches are ineffective against advanced adversaries. To address this gap, we propose a novel model to capture how advanced, stealthy adversaries acquire knowledge about the target network and establish and expand their foothold within the system. This model quantifies the cost and reward, from the adversary's perspective, of compromising and maintaining control over target nodes. We evaluate our model through simulations in the CyberVAN testbed, and indicate how it can guide the development and deployment of future defensive capabilities, including high-interaction honeypots, so as to influence the behavior of adversaries and steer them away from critical resources.

Ong, L., Vellambi, B. N..  2020.  Secure Network and Index Coding Equivalence: The Last Piece of the Puzzle. 2020 IEEE International Symposium on Information Theory (ISIT). :1735—1740.

An equivalence was shown between network coding and index coding. The equivalence allows for a network code for any given network-coding instance to be translated to an index code for a suitably constructed index-coding instance, and vice versa. The equivalence also holds for the opposite direction. A secure version of the equivalence in the presence of eavesdroppers was proven for the case where there is no decoding error and no information leakage to the eavesdroppers. For the case of non-zero decoding error and non-zero leakage, three out of the four directions required for an equivalence were proven. This paper proves the last direction, thereby completing the equivalence between secure network coding and secure index coding.

Fernandes, Steven, Raj, Sunny, Ewetz, Rickard, Pannu, Jodh Singh, Kumar Jha, Sumit, Ortiz, Eddy, Vintila, Iustina, Salter, Margaret.  2020.  Detecting Deepfake Videos using Attribution-Based Confidence Metric. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). :1250–1259.
Recent advances in generative adversarial networks have made detecting fake videos a challenging task. In this paper, we propose the application of the state-of-the-art attribution based confidence (ABC) metric for detecting deepfake videos. The ABC metric does not require access to the training data or training the calibration model on the validation data. The ABC metric can be used to draw inferences even when only the trained model is available. Here, we utilize the ABC metric to characterize whether a video is original or fake. The deep learning model is trained only on original videos. The ABC metric uses the trained model to generate confidence values. For, original videos, the confidence values are greater than 0.94.