# Biblio

In unsecured communications settings, ascertaining the trustworthiness of received information, called authentication, is paramount. We consider keyless authentication over an arbitrarily-varying channel, where channel states are chosen by a malicious adversary with access to noisy versions of transmitted sequences. We have shown previously that a channel condition termed U-overwritability is a sufficient condition for zero authentication capacity over such a channel, and also that with a deterministic encoder, a sufficiently clear-eyed adversary is essentially omniscient. In this paper, we show that even if the authentication capacity with a deterministic encoder and an essentially omniscient adversary is zero, allowing a stochastic encoder can result in a positive authentication capacity. Furthermore, the authentication capacity with a stochastic encoder can be equal to the no-adversary capacity of the underlying channel in this case. We illustrate this for a binary channel model, which provides insight into the more general case.

Physical consequences to power systems of false data injection cyber-attacks are considered. Prior work has shown that the worst-case consequences of such an attack can be determined using a bi-level optimization problem, wherein an attack is chosen to maximize the physical power flow on a target line subsequent to re-dispatch. This problem can be solved as a mixed-integer linear program, but it is difficult to scale to large systems due to numerical challenges. Three new computationally efficient algorithms to solve this problem are presented. These algorithms provide lower and upper bounds on the system vulnerability measured as the maximum power flow subsequent to an attack. Using these techniques, vulnerability assessments are conducted for IEEE 118-bus system and Polish system with 2383 buses.