Visible to the public Biblio

Filters: Author is Jia, C.  [Clear All Filters]
Jia, C., Li, C. L., Ying, Z..  2020.  Facial expression recognition based on the ensemble learning of CNNs. 2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). :1—5.

As a part of body language, facial expression is a psychological state that reflects the current emotional state of the person. Recognition of facial expressions can help to understand others and enhance communication with others. We propose a facial expression recognition method based on convolutional neural network ensemble learning in this paper. Our model is composed of three sub-networks, and uses the SVM classifier to Integrate the output of the three networks to get the final result. The recognition accuracy of the model's expression on the FER2013 dataset reached 71.27%. The results show that the method has high test accuracy and short prediction time, and can realize real-time, high-performance facial recognition.

Pan, T., Xu, C., Lv, J., Shi, Q., Li, Q., Jia, C., Huang, T., Lin, X..  2019.  LD-ICN: Towards Latency Deterministic Information-Centric Networking. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :973–980.
Deterministic latency is the key challenge that must be addressed in numerous 5G applications such as AR/VR. However, it is difficult to make customized end-to-end resource reservation across multiple ISPs using IP-based QoS mechanisms. Information-Centric Networking (ICN) provides scalable and efficient content distribution at the Internet scale due to its in-network caching and native multicast capabilities, and the deterministic latency can promisingly be guaranteed by caching the relevant content objects in appropriate locations. Existing proposals formulate the ICN cache placement problem into numerous theoretical models. However, the underlying mechanisms to support such cache coordination are not discussed in detail. Especially, how to efficiently make cache reservation, how to avoid route oscillation when content cache is updated and how to conduct the real-time latency measurement? In this work, we propose Latency Deterministic Information-Centric Networking (LD-ICN). LD-ICN relies on source routing-based latency telemetry and leverages an on-path caching technique to avoid frequent route oscillation while still achieve the optimal cache placement under the SDN architecture. Extensive evaluation shows that under LD-ICN, 90.04% of the content requests are satisfied within the hard latency requirements.
Lin, L., Zhong, S., Jia, C., Chen, K..  2017.  Insider Threat Detection Based on Deep Belief Network Feature Representation. 2017 International Conference on Green Informatics (ICGI). :54–59.

Insider threat is a significant security risk for information system, and detection of insider threat is a major concern for information system organizers. Recently existing work mainly focused on the single pattern analysis of user single-domain behavior, which were not suitable for user behavior pattern analysis in multi-domain scenarios. However, the fusion of multi-domain irrelevant features may hide the existence of anomalies. Previous feature learning methods have relatively a large proportion of information loss in feature extraction. Therefore, this paper proposes a hybrid model based on the deep belief network (DBN) to detect insider threat. First, an unsupervised DBN is used to extract hidden features from the multi-domain feature extracted by the audit logs. Secondly, a One-Class SVM (OCSVM) is trained from the features learned by the DBN. The experimental results on the CERT dataset demonstrate that the DBN can be used to identify the insider threat events and it provides a new idea to feature processing for the insider threat detection.