Visible to the public Biblio

Filters: Author is Feng, W.  [Clear All Filters]
Liu, W., Niu, H., Luo, W., Deng, W., Wu, H., Dai, S., Qiao, Z., Feng, W..  2020.  Research on Technology of Embedded System Security Protection Component. 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications( AEECA). :21—27.

With the development of the Internet of Things (IoT), it has been widely deployed. As many embedded devices are connected to the network and massive amounts of security-sensitive data are stored in these devices, embedded devices in IoT have become the target of attackers. The trusted computing is a key technology to guarantee the security and trustworthiness of devices' execution environment. This paper focuses on security problems on IoT devices, and proposes a security architecture for IoT devices based on the trusted computing technology. This paper implements a security management system for IoT devices, which can perform integrity measurement, real-time monitoring and security management for embedded applications, providing a safe and reliable execution environment and whitelist-based security protection for IoT devices. This paper also designs and implements an embedded security protection system based on trusted computing technology, containing a measurement and control component in the kernel and a remote graphical management interface for administrators. The kernel layer enforces the integrity measurement and control of the embedded application on the device. The graphical management interface communicates with the remote embedded device through the TCP/IP protocol, and provides a feature-rich and user-friendly interaction interface. It implements functions such as knowledge base scanning, whitelist management, log management, security policy management, and cryptographic algorithm performance testing.

Feng, W., Chen, Z., Fu, Y..  2018.  Autoencoder Classification Algorithm Based on Swam Intelligence Optimization. 2018 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES). :238–241.
BP algorithm used by autoencoder classification algorithm. But the BP algorithm is not only complicated and inefficient, but sometimes falls into local optimum. This makes autoencoder classification algorithm are not very good. So in this paper we combie Quantum Particle Swarm Optimization (QPSO) and autoencoder classification algorithm. QPSO used to optimize the weight of autoencoder neural network and the parameter of softmax. This method has been tested on some database, and the experimental result shows that this method has got good results.
Feng, W., Yan, W., Wu, S., Liu, N..  2017.  Wavelet transform and unsupervised machine learning to detect insider threat on cloud file-sharing. 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). :155–157.

As increasingly more enterprises are deploying cloud file-sharing services, this adds a new channel for potential insider threats to company data and IPs. In this paper, we introduce a two-stage machine learning system to detect anomalies. In the first stage, we project the access logs of cloud file-sharing services onto relationship graphs and use three complementary graph-based unsupervised learning methods: OddBall, PageRank and Local Outlier Factor (LOF) to generate outlier indicators. In the second stage, we ensemble the outlier indicators and introduce the discrete wavelet transform (DWT) method, and propose a procedure to use wavelet coefficients with the Haar wavelet function to identify outliers for insider threat. The proposed system has been deployed in a real business environment, and demonstrated effectiveness by selected case studies.