Visible to the public Biblio

Filters: Author is Zhang, M.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
U
Xie, J., Zhang, M., Ma, Y..  2019.  Using Format Migration and Preservation Metadata to Support Digital Preservation of Scientific Data. 2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS). :1—6.

With the development of e-Science and data intensive scientific discovery, it needs to ensure scientific data available for the long-term, with the goal that the valuable scientific data should be discovered and re-used for downstream investigations, either alone, or in combination with newly generated data. As such, the preservation of scientific data enables that not only might experiment be reproducible and verifiable, but also new questions can be raised by other scientists to promote research and innovation. In this paper, we focus on the two main problems of digital preservation that are format migration and preservation metadata. Format migration includes both format verification and object transformation. The system architecture of format migration and preservation metadata is presented, mapping rules of object transformation are analyzed, data fixity and integrity and authenticity, digital signature and so on are discussed and an example is shown in detail.

T
Wang, S., Mei, Y., Park, J., Zhang, M..  2019.  A Two-Stage Genetic Programming Hyper-Heuristic for Uncertain Capacitated Arc Routing Problem. 2019 IEEE Symposium Series on Computational Intelligence (SSCI). :1606—1613.

Genetic Programming Hyper-heuristic (GPHH) has been successfully applied to automatically evolve effective routing policies to solve the complex Uncertain Capacitated Arc Routing Problem (UCARP). However, GPHH typically ignores the interpretability of the evolved routing policies. As a result, GP-evolved routing policies are often very complex and hard to be understood and trusted by human users. In this paper, we aim to improve the interpretability of the GP-evolved routing policies. To this end, we propose a new Multi-Objective GP (MOGP) to optimise the performance and size simultaneously. A major issue here is that the size is much easier to be optimised than the performance, and the search tends to be biased to the small but poor routing policies. To address this issue, we propose a simple yet effective Two-Stage GPHH (TS-GPHH). In the first stage, only the performance is to be optimised. Then, in the second stage, both objectives are considered (using our new MOGP). The experimental results showed that TS-GPHH could obtain much smaller and more interpretable routing policies than the state-of-the-art single-objective GPHH, without deteriorating the performance. Compared with traditional MOGP, TS-GPHH can obtain a much better and more widespread Pareto front.

S
Zhang, M., Wei, T., Li, Z., Zhou, Z..  2020.  A service-oriented adaptive anonymity algorithm. 2020 39th Chinese Control Conference (CCC). :7626—7631.

Recently, a large amount of research studies aiming at the privacy-preserving data publishing have been conducted. We find that most K-anonymity algorithms fail to consider the characteristics of attribute values distribution in data and the contribution value differences in quasi-identifier attributes when service-oriented. In this paper, the importance of distribution characteristics of attribute values and the differences in contribution value of quasi-identifier attributes to anonymous results are illustrated. In order to maximize the utility of released data, a service-oriented adaptive anonymity algorithm is proposed. We establish a model of reaction dispersion degree to quantify the characteristics of attribute value distribution and introduce the concept of utility weight related to the contribution value of quasi-identifier attributes. The priority coefficient and the characterization coefficient of partition quality are defined to optimize selection strategies of dimension and splitting value in anonymity group partition process adaptively, which can reduce unnecessary information loss so as to further improve the utility of anonymized data. The rationality and validity of the algorithm are verified by theoretical analysis and multiple experiments.

Zhang, M., Chen, Y., Huang, J..  2020.  SE-PPFM: A Searchable Encryption Scheme Supporting Privacy-Preserving Fuzzy Multikeyword in Cloud Systems. IEEE Systems Journal. :1–9.
Cloud computing provides an appearing application for compelling vision in managing big-data files and responding queries over a distributed cloud platform. To overcome privacy revealing risks, sensitive documents and private data are usually stored in the clouds in a cipher-based manner. However, it is inefficient to search the data in traditional encryption systems. Searchable encryption is a useful cryptographic primitive to enable users to retrieve data in ciphertexts. However, the traditional searchable encryptions provide lower search efficiency and cannot carry out fuzzy multikeyword queries. To solve this issue, in this article, we propose a searchable encryption that supports privacy-preserving fuzzy multikeyword search (SE-PPFM) in cloud systems, which is built by asymmetric scalar-product-preserving encryptions and Hadamard product operations. In order to realize the functionality of efficient fuzzy searches, we employ Word2vec as the primitive of machine learning to obtain a fuzzy correlation score between encrypted data and queries predicates. We analyze and evaluate the performance in terms of token of multikeyword, retrieval and match time, file retrieval time and matching accuracy, etc. The experimental results show that our scheme can achieve a higher efficiency in fuzzy multikeyword ciphertext search and provide a higher accuracy in retrieving and matching procedure.
R
Hu, W., Zhang, L., Liu, X., Huang, Y., Zhang, M., Xing, L..  2020.  Research on Automatic Generation and Analysis Technology of Network Attack Graph. 2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :133–139.
In view of the problem that the overall security of the network is difficult to evaluate quantitatively, we propose the edge authority attack graph model, which aims to make up for the traditional dependence attack graph to describe the relationship between vulnerability behaviors. This paper proposed a network security metrics based on probability, and proposes a network vulnerability algorithm based on vulnerability exploit probability and attack target asset value. Finally, a network security reinforcement algorithm with network vulnerability index as the optimization target is proposed based on this metric algorithm.
Zhang, M., Chen, Q., Zhang, Y., Liu, X., Dong, S..  2017.  Requirement analysis and descriptive specification for exploratory evaluation of information system security protection capability. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :1874–1878.

Exploratory evaluation is an effective way to analyze and improve the security of information system. The information system structure model for security protection capability is set up in view of the exploratory evaluation requirements of security protection capability, and the requirements of agility, traceability and interpretation for exploratory evaluation are obtained by analyzing the relationship between information system, protective equipment and protection policy. Aimed at the exploratory evaluation description problem of security protection capability, the exploratory evaluation problem and exploratory evaluation process are described based on the Granular Computing theory, and a general mathematical description is established. Analysis shows that the standardized description established meets the exploratory evaluation requirements, and it can provide an analysis basis and description specification for exploratory evaluation of information system security protection capability.

N
Jin, H., Wang, T., Zhang, M., Li, M., Wang, Y., Snoussi, H..  2020.  Neural Style Transfer for Picture with Gradient Gram Matrix Description. 2020 39th Chinese Control Conference (CCC). :7026–7030.
Despite the high performance of neural style transfer on stylized pictures, we found that Gatys et al [1] algorithm cannot perfectly reconstruct texture style. Output stylized picture could emerge unsatisfied unexpected textures such like muddiness in local area and insufficient grain expression. Our method bases on original algorithm, adding the Gradient Gram description on style loss, aiming to strengthen texture expression and eliminate muddiness. To some extent our method lengthens the runtime, however, its output stylized pictures get higher performance on texture details, especially in the elimination of muddiness.
M
Sun, X., Liu, H., Zhang, M..  2016.  Multivariate symmetric cryptography with 2-dimesion chaotic disturbation. 2016 8th International Conference on Wireless Communications Signal Processing (WCSP). :1–4.

Multivariate public key cryptosystem acts as a signature system rather than encryption system due to the minus mode used in system. A multivariate encryption system with determinate equations in central map and chaotic shell protection for central map and affine map is proposed in this paper. The outputs of two-dimension chaotic system are discretized on a finite field to disturb the central map and affine map in multivariate cryptosystem. The determined equations meet the shortage of indeterminate equations in minus mode and make the general attack methods are out of tenable condition. The analysis shows the proposed multivariate symmetric encryption system based on chaotic shell is able to resist general attacks.

D
Liu, J., Tong, X., Zhang, M., Wang, Z..  2020.  The Design of S-box Based on Combined Chaotic Map. 2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :350–353.
The strength of the substitution box (S-box) determines the security of the cryptographic algorithm because it's the only nonlinear component in the block cipher. Because of the disadvantages of non-uniformity sequence and limited range in the one-dimension (1D) chaotic map, this paper constructs the logistic map and the sine map into a combined chaotic map, and a new S-box construction method based on this combined chaotic map is presented. Performance tests were performed on the S-box, including nonlinearity, linear probability, differential probability, strict avalanche criterion, bits independence criterion. Compared with others S-box, this result indicates that the S-box has more excellent cryptographic performance and can be used as a nonlinear component in the lightweight block cipher algorithm.
A
Gui, J., Li, D., Chen, Z., Rhee, J., Xiao, X., Zhang, M., Jee, K., Li, Z., Chen, H..  2020.  APTrace: A Responsive System for Agile Enterprise Level Causality Analysis. 2020 IEEE 36th International Conference on Data Engineering (ICDE). :1701–1712.
While backtracking analysis has been successful in assisting the investigation of complex security attacks, it faces a critical dependency explosion problem. To address this problem, security analysts currently need to tune backtracking analysis manually with different case-specific heuristics. However, existing systems fail to fulfill two important system requirements to achieve effective backtracking analysis. First, there need flexible abstractions to express various types of heuristics. Second, the system needs to be responsive in providing updates so that the progress of backtracking analysis can be frequently inspected, which typically involves multiple rounds of manual tuning. In this paper, we propose a novel system, APTrace, to meet both of the above requirements. As we demonstrate in the evaluation, security analysts can effectively express heuristics to reduce more than 99.5% of irrelevant events in the backtracking analysis of real-world attack cases. To improve the responsiveness of backtracking analysis, we present a novel execution-window partitioning algorithm that significantly reduces the waiting time between two consecutive updates (especially, 57 times reduction for the top 1% waiting time).
Liu, H., Zhou, Z., Zhang, M..  2020.  Application of Optimized Bidirectional Generative Adversarial Network in ICS Intrusion Detection. 2020 Chinese Control And Decision Conference (CCDC). :3009—3014.

Aiming at the problem that the traditional intrusion detection method can not effectively deal with the massive and high-dimensional network traffic data of industrial control system (ICS), an ICS intrusion detection strategy based on bidirectional generative adversarial network (BiGAN) is proposed in this paper. In order to improve the applicability of BiGAN model in ICS intrusion detection, the optimal model was obtained through the single variable principle and cross-validation. On this basis, the supervised control and data acquisition (SCADA) standard data set is used for comparative experiments to verify the performance of the optimized model on ICS intrusion detection. The results show that the ICS intrusion detection method based on optimized BiGAN has higher accuracy and shorter detection time than other methods.