Visible to the public Biblio

Filters: Author is Zhang, Y.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
Berscheid, A., Makarov, Y., Hou, Z., Diao, R., Zhang, Y., Samaan, N., Yuan, Y., Zhou, H..  2018.  An Open-Source Tool for Automated Power Grid Stress Level Prediction at Balancing Authorities. 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T D). :1–5.
The behavior of modern power systems is becoming more stochastic and dynamic, due to the increased penetration of variable generation, demand response, new power market structure, extreme weather conditions, contingencies, and unexpected events. It is critically important to predict potential system operational issues so that grid planners and operators can take preventive actions to mitigate the impact, e.g., lack of operational reserves. In this paper, an innovative software tool is presented to assist power grid operators in a balancing authority in predicting the grid stress level over the next operating day. It periodically collects necessary information from public domain such as weather forecasts, electricity demand, and automatically estimates the stress levels on a daily basis. Advanced Neural Network and regression tree algorithms are developed as the prediction engines to achieve this goal. The tool has been tested on a few key balancing authorities and successfully predicted the growing system peak load and increased stress levels under extreme heat waves.
D
Dong, C., Liu, Y., Zhang, Y., Shi, P., Shao, X., Ma, C..  2018.  Abnormal Bus Data Detection of Intelligent and Connected Vehicle Based on Neural Network. 2018 IEEE International Conference on Computational Science and Engineering (CSE). :171–176.
In the paper, our research of abnormal bus data analysis of intelligent and connected vehicle aims to detect the abnormal data rapidly and accurately generated by the hackers who send malicious commands to attack vehicles through three patterns, including remote non-contact, short-range non-contact and contact. The research routine is as follows: Take the bus data of 10 different brands of intelligent and connected vehicles through the real vehicle experiments as the research foundation, set up the optimized neural network, collect 1000 sets of the normal bus data of 15 kinds of driving scenarios and the other 300 groups covering the abnormal bus data generated by attacking the three systems which are most common in the intelligent and connected vehicles as the training set. In the end after repeated amendments, with 0.5 seconds per detection, the intrusion detection system has been attained in which for the controlling system the abnormal bus data is detected at the accuracy rate of 96% and the normal data is detected at the accuracy rate of 90%, for the body system the abnormal one is 87% and the normal one is 80%, for the entertainment system the abnormal one is 80% and the normal one is 65%.
F
Fu, Y., Tong, S., Guo, X., Cheng, L., Zhang, Y., Feng, D..  2020.  Improving the Effectiveness of Grey-box Fuzzing By Extracting Program Information. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :434–441.
Fuzzing has been widely adopted as an effective techniques to detect vulnerabilities in softwares. However, existing fuzzers suffer from the problems of generating excessive test inputs that either cannot pass input validation or are ineffective in exploring unvisited regions in the program under test (PUT). To tackle these problems, we propose a greybox fuzzer called MuFuzzer based on AFL, which incorporates two heuristics that optimize seed selection and automatically extract input formatting information from the PUT to increase the chance of generating valid test inputs, respectively. In particular, the first heuristic collects the branch coverage and execution information during a fuzz session, and utilizes such information to guide fuzzing tools in selecting seeds that are fast to execute, small in size, and more importantly, more likely to explore new behaviors of the PUT for subsequent fuzzing activities. The second heuristic automatically identifies string comparison operations that the PUT uses for input validation, and establishes a dictionary with string constants from these operations to help fuzzers generate test inputs that have higher chances to pass input validation. We have evaluated the performance of MuFuzzer, in terms of code coverage and bug detection, using a set of realistic programs and the LAVA-M test bench. Experiment results demonstrate that MuFuzzer is able to achieve higher code coverage and better or comparative bug detection performance than state-of-the-art fuzzers.
G
Ge, H., Yue, D., p Xie, X., Deng, S., Zhang, Y..  2017.  Analysis of Cyber Physical Systems Security via Networked Attacks. 2017 36th Chinese Control Conference (CCC). :4266–4272.

In this paper, cyber physical system is analyzed from security perspective. A double closed-loop security control structure and algorithm with defense functions is proposed. From this structure, the features of several cyber attacks are considered respectively. By this structure, the models of information disclosure, denial-of-service (DoS) and Man-in-the-Middle Attack (MITM) are proposed. According to each kind attack, different models are obtained and analyzed, then reduce to the unified models. Based on this, system security conditions are obtained, and a defense scenario with detail algorithm is design to illustrate the implementation of this program.

H
He, F., Zhang, Y., Liu, H., Zhou, W..  2018.  SCPN-Based Game Model for Security Situational Awareness in the Intenet of Things. 2018 IEEE Conference on Communications and Network Security (CNS). :1-5.
Internet of Things (IoT) is characterized by various of heterogeneous devices that facing numerous threats, which makes modeling security situation of IoT still a certain challenge. This paper defines a Stochastic Colored Petri Net (SCPN) for IoT-based smart environment and then proposes a Game model for security situational awareness. All possible attack paths are computed by the SCPN, and antagonistic behavior of both attackers and defenders are taken into consideration dynamically according to Game Theory (GT). Experiments on two typical attack scenarios in smart home environment demonstrate the effectiveness of the proposed model. The proposed model can form a macroscopic trend curve of the security situation. Analysis of the results shows the capabilities of the proposed model in finding vulnerable devices and potential attack paths, and even facilitating the choice of defense strategy. To the best of our knowledge, this is the first attempt to use Game Theory in the IoT-based SCPN to establish a security situational awareness model for a complex smart environment.
L
Li, M., Zhang, Y., Sun, Y., Wang, W., Tsang, I. W., Lin, X..  2020.  I/O Efficient Approximate Nearest Neighbour Search based on Learned Functions. 2020 IEEE 36th International Conference on Data Engineering (ICDE). :289–300.
Approximate nearest neighbour search (ANNS) in high dimensional space is a fundamental problem in many applications, such as multimedia database, computer vision and information retrieval. Among many solutions, data-sensitive hashing-based methods are effective to this problem, yet few of them are designed for external storage scenarios and hence do not optimized for I/O efficiency during the query processing. In this paper, we introduce a novel data-sensitive indexing and query processing framework for ANNS with an emphasis on optimizing the I/O efficiency, especially, the sequential I/Os. The proposed index consists of several lists of point IDs, ordered by values that are obtained by learned hashing (i.e., mapping) functions on each corresponding data point. The functions are learned from the data and approximately preserve the order in the high-dimensional space. We consider two instantiations of the functions (linear and non-linear), both learned from the data with novel objective functions. We also develop an I/O efficient ANNS framework based on the index. Comprehensive experiments on six benchmark datasets show that our proposed methods with learned index structure perform much better than the state-of-the-art external memory-based ANNS methods in terms of I/O efficiency and accuracy.
Lin, Y., Liu, H., Xie, G., Zhang, Y..  2018.  Time Series Forecasting by Evolving Deep Belief Network with Negative Correlation Search. 2018 Chinese Automation Congress (CAC). :3839-3843.

The recently developed deep belief network (DBN) has been shown to be an effective methodology for solving time series forecasting problems. However, the performance of DBN is seriously depended on the reasonable setting of hyperparameters. At present, random search, grid search and Bayesian optimization are the most common methods of hyperparameters optimization. As an alternative, a state-of-the-art derivative-free optimizer-negative correlation search (NCS) is adopted in this paper to decide the sizes of DBN and learning rates during the training processes. A comparative analysis is performed between the proposed method and other popular techniques in the time series forecasting experiment based on two types of time series datasets. Experiment results statistically affirm the efficiency of the proposed model to obtain better prediction results compared with conventional neural network models.

Lyu, C., Pande, A., Zhang, Y., Gu, D., Mohapatra, P..  2018.  FastTrust: Fast and Anonymous Spatial-Temporal Trust for Connected Cars on Expressways. 2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). :1–9.

Connected cars have received massive attention in Intelligent Transportation System. Many potential services, especially safety-related ones, rely on spatial-temporal messages periodically broadcast by cars. Without a secure authentication algorithm, malicious cars may send out invalid spatial-temporal messages and then deny creating them. Meanwhile, a lot of private information may be disclosed from these spatial-temporal messages. Since cars move on expressways at high speed, any authentication must be performed in real-time to prevent crashes. In this paper, we propose a Fast and Anonymous Spatial-Temporal Trust (FastTrust) mechanism to ensure these properties. In contrast to most authentication protocols which rely on fixed infrastructures, FastTrust is distributed and mostly designed on symmetric-key cryptography and an entropy-based commitment, and is able to fast authenticate spatial-temporal messages. FastTrust also ensures the anonymity and unlinkability of spatial-temporal messages by developing a pseudonym-varying scheduling scheme on cars. We provide both analytical and simulation evaluations to show that FastTrust achieves the security and privacy properties. FastTrust is low-cost in terms of communication and computational resources, authenticating 20 times faster than existing Elliptic Curve Digital Signature Algorithm.

S
Shen, N., Yeh, J., Chen, C., Chen, Y., Zhang, Y..  2019.  Ensuring Query Completeness in Outsourced Database Using Order-Preserving Encryption. 2019 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom). :776–783.
Nowadays database outsourcing has become business owners' preferred option and they are benefiting from its flexibility, reliability, and low cost. However, because database service providers cannot always be fully trusted and data owners will no longer have a direct control over their own data, how to make the outsourced data secure becomes a hot research topic. From the data integrity protection aspect, the client wants to make sure the data returned is correct, complete, and up-to-date. Previous research work in literature put more efforts on data correctness, while data completeness is still a challenging problem to solve. There are some existing works that tried to protect the completeness of data. Unfortunately, these solutions were considered not fully solving the problem because of their high communication or computation overhead. The implementations and limitations of existing works will be further discussed in this paper. From the data confidentiality protection aspect, order-preserving encryption (OPE) is a widely used encryption scheme in protecting data confidentiality. It allows the client to perform range queries and some other operations such as GROUP BY and ORDER BY over the OPE encrypted data. Therefore, it is worthy to develop a solution that allows user to verify the query completeness for an OPE encrypted database so that both data confidentiality and completeness are both protected. Inspired by this motivation, we propose a new data completeness protecting scheme by inserting fake tuples into databases. Both the real and fake tuples are OPE encrypted and thus the cloud server cannot distinguish among them. While our new scheme is much more efficient than all existing approaches, the level of security protection remains the same.
T
Tai, J., Alsmadi, I., Zhang, Y., Qiao, F..  2020.  Machine Learning Methods for Anomaly Detection in Industrial Control Systems. 2020 IEEE International Conference on Big Data (Big Data). :2333—2339.

This paper examines multiple machine learning models to find the model that best indicates anomalous activity in an industrial control system that is under a software-based attack. The researched machine learning models are Random Forest, Gradient Boosting Machine, Artificial Neural Network, and Recurrent Neural Network classifiers built-in Python and tested against the HIL-based Augmented ICS dataset. Although the results showed that Random Forest, Gradient Boosting Machine, Artificial Neural Network, and Long Short-Term Memory classification models have great potential for anomaly detection in industrial control systems, we found that Random Forest with tuned hyperparameters slightly outperformed the other models.

Teoh, T. T., Zhang, Y., Nguwi, Y. Y., Elovici, Y., Ng, W. L..  2017.  Analyst Intuition Inspired High Velocity Big Data Analysis Using PCA Ranked Fuzzy K-Means Clustering with Multi-Layer Perceptron (MLP) to Obviate Cyber Security Risk. 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). :1790–1793.
The growing prevalence of cyber threats in the world are affecting every network user. Numerous security monitoring systems are being employed to protect computer networks and resources from falling victim to cyber-attacks. There is a pressing need to have an efficient security monitoring system to monitor the large network datasets generated in this process. A large network datasets representing Malware attacks have been used in this work to establish an expert system. The characteristics of attacker's IP addresses can be extracted from our integrated datasets to generate statistical data. The cyber security expert provides to the weight of each attribute and forms a scoring system by annotating the log history. We adopted a special semi supervise method to classify cyber security log into attack, unsure and no attack by first breaking the data into 3 cluster using Fuzzy K mean (FKM), then manually label a small data (Analyst Intuition) and finally train the neural network classifier multilayer perceptron (MLP) base on the manually labelled data. By doing so, our results is very encouraging as compare to finding anomaly in a cyber security log, which generally results in creating huge amount of false detection. The method of including Artificial Intelligence (AI) and Analyst Intuition (AI) is also known as AI2. The classification results are encouraging in segregating the types of attacks.
W
Wang, B., Dou, Y., Sang, Y., Zhang, Y., Huang, J..  2020.  IoTCMal: Towards A Hybrid IoT Honeypot for Capturing and Analyzing Malware. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—7.

Nowadays, the emerging Internet-of-Things (IoT) emphasize the need for the security of network-connected devices. Additionally, there are two types of services in IoT devices that are easily exploited by attackers, weak authentication services (e.g., SSH/Telnet) and exploited services using command injection. Based on this observation, we propose IoTCMal, a hybrid IoT honeypot framework for capturing more comprehensive malicious samples aiming at IoT devices. The key novelty of IoTC-MAL is three-fold: (i) it provides a high-interactive component with common vulnerable service in real IoT device by utilizing traffic forwarding technique; (ii) it also contains a low-interactive component with Telnet/SSH service by running in virtual environment. (iii) Distinct from traditional low-interactive IoT honeypots[1], which only analyze family categories of malicious samples, IoTCMal primarily focuses on homology analysis of malicious samples. We deployed IoTCMal on 36 VPS1 instances distributed in 13 cities of 6 countries. By analyzing the malware binaries captured from IoTCMal, we discover 8 malware families controlled by at least 11 groups of attackers, which mainly launched DDoS attacks and digital currency mining. Among them, about 60% of the captured malicious samples ran in ARM or MIPs architectures, which are widely used in IoT devices.

Wang, S., Zhu, S., Zhang, Y..  2018.  Blockchain-Based Mutual Authentication Security Protocol for Distributed RFID Systems. 2018 IEEE Symposium on Computers and Communications (ISCC). :00074–00077.

Since radio frequency identification (RFID) technology has been used in various scenarios such as supply chain, access control system and credit card, tremendous efforts have been made to improve the authentication between tags and readers to prevent potential attacks. Though effective in certain circumstances, these existing methods usually require a server to maintain a database of identity related information for every tag, which makes the system vulnerable to the SQL injection attack and not suitable for distributed environment. To address these problems, we now propose a novel blockchain-based mutual authentication security protocol. In this new scheme, there is no need for the trusted third parties to provide security and privacy for the system. Authentication is executed as an unmodifiable transaction based on blockchain rather than database, which applies to distributed RFID systems with high security demand and relatively low real-time requirement. Analysis shows that our protocol is logically correct and can prevent multiple attacks.

Wang, X., Chi, Y., Zhang, Y..  2020.  Traceable Ciphertext Policy Attribute-based Encryption Scheme with User Revocation for Cloud Storage. 2020 International Conference on Computer Engineering and Application (ICCEA). :91–95.
Ciphertext policy Attribute-based encryption (CPABE) plays an increasingly important role in the field of fine-grained access control for cloud storage. However, The exiting solution can not balance the issue of user identity tracking and user revocation. In this paper, we propose a CP-ABE scheme that supports association revocation and traceability. This scheme uses identity directory technology to realize single user revocation and associated user revocation, and the ciphertext re-encryption technology guarantees the forward security of revocation without updating the private key. In addition, we can accurately trace the identity of the user according to the decryption private key and effectively solve the problem of key abuse. This scheme is proved to be safe and traceable under the standard model, and can effectively control the computational and storage costs while maintaining functional advantages. It is suitable for the practical scenarios of tracking audit and user revocation.
Wu, D., Zhang, Y., Liu, Y..  2017.  Dummy Location Selection Scheme for K-Anonymity in Location Based Services. 2017 IEEE Trustcom/BigDataSE/ICESS. :441–448.

Location-Based Service (LBS) becomes increasingly important for our daily life. However, the localization information in the air is vulnerable to various attacks, which result in serious privacy concerns. To overcome this problem, we formulate a multi-objective optimization problem with considering both the query probability and the practical dummy location region. A low complexity dummy location selection scheme is proposed. We first find several candidate dummy locations with similar query probabilities. Among these selected candidates, a cloaking area based algorithm is then offered to find K - 1 dummy locations to achieve K-anonymity. The intersected area between two dummy locations is also derived to assist to determine the total cloaking area. Security analysis verifies the effectiveness of our scheme against the passive and active adversaries. Compared with other methods, simulation results show that the proposed dummy location scheme can improve the privacy level and enlarge the cloaking area simultaneously.

Wu, D., Xu, Z., Chen, B., Zhang, Y..  2017.  Towards Access Control for Network Coding-Based Named Data Networking. GLOBECOM 2017 - 2017 IEEE Global Communications Conference. :1–6.

Named Data Networking (NDN) is a content-oriented future Internet architecture, which well suits the increasingly mobile and information-intensive applications that dominate today's Internet. NDN relies on in-network caching to facilitate content delivery. This makes it challenging to enforce access control since the content has been cached in the routers and the content producer has lost the control over it. Due to its salient advantages in content delivery, network coding has been introduced into NDN to improve content delivery effectiveness. In this paper, we design ACNC, the first Access Control solution specifically for Network Coding-based NDN. By combining a novel linear AONT (All Or Nothing Transform) and encryption, we can ensure that only the legitimate user who possesses the authorization key can successfully recover the encoding matrix for network coding, and hence can recover the content being transmitted. In addition, our design has two salient merits: 1) the linear AONT well suits the linear nature of network coding; 2) only one vector of the encoding matrix needs to be encrypted/decrypted, which only incurs small computational overhead. Security analysis and experimental evaluation in ndnSIM show that our design can successfully enforce access control on network coding-based NDN with an acceptable overhead.

X
Xia, D., Zhang, Y..  2017.  The fuzzy control of trust establishment. 2017 4th International Conference on Systems and Informatics (ICSAI). :655–659.

In the open network environment, the strange entities can establish the mutual trust through Automated Trust Negotiation (ATN) that is based on exchanging digital credentials. In traditional ATN, the attribute certificate required to either satisfied or not, and in the strategy, the importance of the certificate is same, it may cause some unnecessary negotiation failure. And in the actual situation, the properties is not just 0 or 1, it is likely to between 0 and 1, so the satisfaction degree is different, and the negotiation strategy need to be quantified. This paper analyzes the fuzzy negotiation process, in order to improve the trust establishment in high efficiency and accuracy further.

Y
Yang, B., Liu, F., Yuan, L., Zhang, Y..  2020.  6LoWPAN Protocol Based Infrared Sensor Network Human Target Locating System. 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA). :1773–1779.
This paper proposes an infrared sensor human target locating system for the Internet of Things. In this design, the wireless sensor network is designed and developed to detect human targets by using 6LoWPAN protocol and pyroelectric infrared (PIR) sensors. Based on the detection data acquired by multiple sensor nodes, K-means++ clustering algorithm combined with cost function is applied to complete human target location in a 10m×10m detection area. The experimental results indicate the human locating system works well and the user can view the location information on the terminal devices.
Yang, B., Xu, G., Zeng, X., Liu, J., Zhang, Y..  2018.  A Lightweight Anonymous Mobile User Authentication Scheme for Smart Grid. 2018 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :821-827.

Smart Grid (SG) technology has been developing for years, which facilitates users with portable access to power through being applied in numerous application scenarios, one of which is the electric vehicle charging. In order to ensure the security of the charging process, users need authenticating with the smart meter for the subsequent communication. Although there are many researches in this field, few of which have endeavored to protect the anonymity and the untraceability of users during the authentication. Further, some studies consider the problem of user anonymity, but they are non-light-weight protocols, even some can not assure any fairness in key agreement. In this paper, we first points out that existing authentication schemes for Smart Grid are neither lack of critical security nor short of important property such as untraceability, then we propose a new two-factor lightweight user authentication scheme based on password and biometric. The authentication process of the proposed scheme includes four message exchanges among the user mobile, smart meter and the cloud server, and then a security one-time session key is generated for the followed communication process. Moreover, the scheme has some new features, such as the protection of the user's anonymity and untraceability. Security analysis shows that our proposed scheme can resist various well-known attacks and the performance analysis shows that compared to other three schemes, our scheme is more lightweight, secure and efficient.

Yang, Z., Sun, Q., Zhang, Y., Zhu, L., Ji, W..  2020.  Inference of Suspicious Co-Visitation and Co-Rating Behaviors and Abnormality Forensics for Recommender Systems. IEEE Transactions on Information Forensics and Security. 15:2766—2781.
The pervasiveness of personalized collaborative recommender systems has shown the powerful capability in a wide range of E-commerce services such as Amazon, TripAdvisor, Yelp, etc. However, fundamental vulnerabilities of collaborative recommender systems leave space for malicious users to affect the recommendation results as the attackers desire. A vast majority of existing detection methods assume certain properties of malicious attacks are given in advance. In reality, improving the detection performance is usually constrained due to the challenging issues: (a) various types of malicious attacks coexist, (b) limited representations of malicious attack behaviors, and (c) practical evidences for exploring and spotting anomalies on real-world data are scarce. In this paper, we investigate a unified detection framework in an eye for an eye manner without being bothered by the details of the attacks. Firstly, co-visitation and co-rating graphs are constructed using association rules. Then, attribute representations of nodes are empirically developed from the perspectives of linkage pattern, structure-based property and inherent association of nodes. Finally, both attribute information and connective coherence of graph are combined in order to infer suspicious nodes. Extensive experiments on both synthetic and real-world data demonstrate the effectiveness of the proposed detection approach compared with competing benchmarks. Additionally, abnormality forensics metrics including distribution of rating intention, time aggregation of suspicious ratings, degree distributions before as well as after removing suspicious nodes and time series analysis of historical ratings, are provided so as to discover interesting findings such as suspicious nodes (items or ratings) on real-world data.
Yousefi, M., Mtetwa, N., Zhang, Y., Tianfield, H..  2017.  A Novel Approach for Analysis of Attack Graph. 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). :7–12.

Attack graph technique is a common tool for the evaluation of network security. However, attack graphs are generally too large and complex to be understood and interpreted by security administrators. This paper proposes an analysis framework for security attack graphs for a given IT infrastructure system. First, in order to facilitate the discovery of interconnectivities among vulnerabilities in a network, multi-host multi-stage vulnerability analysis (MulVAL) is employed to generate an attack graph for a given network topology. Then a novel algorithm is applied to refine the attack graph and generate a simplified graph called a transition graph. Next, a Markov model is used to project the future security posture of the system. Finally, the framework is evaluated by applying it on a typical IT network scenario with specific services, network configurations, and vulnerabilities.

Yousefi, M., Mtetwa, N., Zhang, Y., Tianfield, H..  2018.  A Reinforcement Learning Approach for Attack Graph Analysis. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :212-217.

Attack graph approach is a common tool for the analysis of network security. However, analysis of attack graphs could be complicated and difficult depending on the attack graph size. This paper presents an approximate analysis approach for attack graphs based on Q-learning. First, we employ multi-host multi-stage vulnerability analysis (MulVAL) to generate an attack graph for a given network topology. Then we refine the attack graph and generate a simplified graph called a transition graph. Next, we use a Q-learning model to find possible attack routes that an attacker could use to compromise the security of the network. Finally, we evaluate the approach by applying it to a typical IT network scenario with specific services, network configurations, and vulnerabilities.

Z
Zhang, F., Dong, X., Zhao, X., Wang, Y., Qureshi, S., Zhang, Y., Lou, X., Tang, Y..  2018.  Theoretical Round Modification Fault Analysis on AEGIS-128 with Algebraic Techniques. 2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). :335-343.
This paper proposed an advanced round modification fault analysis (RMFA) at the theoretical level on AEGIS-128, which is one of seven finalists in CAESAR competition. First, we clarify our assumptions and simplifications on the attack model, focusing on the encryption security. Then, we emphasize the difficulty of applying vanilla RMFA to AEGIS-128 in the practical case. Finally we demonstrate our advanced fault analysis on AEGIS-128 using machine-solver based algebraic techniques. Our enhancement can be used to conquer the practical scenario which is difficult for vanilla RMFA. Simulation results show that when the fault is injected to the initialization phase and the number of rounds is reduced to one, two samples of injections can extract the whole 128 key bits within less than two hours. This work can also be extended to other versions such as AEGIS-256.
Zhang, M., Chen, Q., Zhang, Y., Liu, X., Dong, S..  2017.  Requirement analysis and descriptive specification for exploratory evaluation of information system security protection capability. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :1874–1878.

Exploratory evaluation is an effective way to analyze and improve the security of information system. The information system structure model for security protection capability is set up in view of the exploratory evaluation requirements of security protection capability, and the requirements of agility, traceability and interpretation for exploratory evaluation are obtained by analyzing the relationship between information system, protective equipment and protection policy. Aimed at the exploratory evaluation description problem of security protection capability, the exploratory evaluation problem and exploratory evaluation process are described based on the Granular Computing theory, and a general mathematical description is established. Analysis shows that the standardized description established meets the exploratory evaluation requirements, and it can provide an analysis basis and description specification for exploratory evaluation of information system security protection capability.

Zhang, Y., Deng, L., Chen, M., Wang, P..  2018.  Joint Bidding and Geographical Load Balancing for Datacenters: Is Uncertainty a Blessing or a Curse? IEEE/ACM Transactions on Networking. 26:1049—1062.

We consider the scenario where a cloud service provider (CSP) operates multiple geo-distributed datacenters to provide Internet-scale service. Our objective is to minimize the total electricity and bandwidth cost by jointly optimizing electricity procurement from wholesale markets and geographical load balancing (GLB), i.e., dynamically routing workloads to locations with cheaper electricity. Under the ideal setting where exact values of market prices and workloads are given, this problem reduces to a simple linear programming and is easy to solve. However, under the realistic setting where only distributions of these variables are available, the problem unfolds into a non-convex infinite-dimensional one and is challenging to solve. One of our main contributions is to develop an algorithm that is proven to solve the challenging problem optimally, by exploring the full design space of strategic bidding. Trace-driven evaluations corroborate our theoretical results, demonstrate fast convergence of our algorithm, and show that it can reduce the cost for the CSP by up to 20% as compared with baseline alternatives. This paper highlights the intriguing role of uncertainty in workloads and market prices, measured by their variances. While uncertainty in workloads deteriorates the cost-saving performance of joint electricity procurement and GLB, counter-intuitively, uncertainty in market prices can be exploited to achieve a cost reduction even larger than the setting without price uncertainty.