Visible to the public Biblio

Filters: Author is Li, S.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Han, K., Li, S., Wang, Z., Yang, X..  2018.  Actuator deception attack detection and estimation for a class of nonlinear systems. 2018 37th Chinese Control Conference (CCC). :5675–5680.
In this paper, an novel active safety monitoring system is constructed for a class of nonlinear discrete-time systems. The considered nonlinear system is subjected to unknown inputs, external disturbances, and possible unknown deception attacks, simultaneously. In order to secure the safety of control systems, an active attack estimator composed of state/output estimator, attack detector and attack/attacker action estimator is constructed to monitor the system running status. The analysis and synthesis of attack estimator is performed in the H∞performance optimization manner. The off-line calculation and on-line application of active attack estimator are summarized simultaneously. The effectiveness of the proposed results is finally verified by an numerical example.
Xing, Z., Liu, L., Li, S., Liu, Y..  2018.  Analysis of Radiation Effects for Monitoring Circuit Based on Deep Belief Network and Support Vector Method. 2018 Prognostics and System Health Management Conference (PHM-Chongqing). :511-516.

The monitoring circuit is widely applied in radiation environment and it is of significance to study the circuit reliability with the radiation effects. In this paper, an intelligent analysis method based on Deep Belief Network (DBN) and Support Vector Method is proposed according to the radiation experiments analysis of the monitoring circuit. The Total Ionizing Dose (TID) of the monitoring circuit is used to identify the circuit degradation trend. Firstly, the output waveforms of the monitoring circuit are obtained by radiating with the different TID. Subsequently, the Deep Belief Network Model is trained to extract the features of the circuit signal. Finally, the Support Vector Machine (SVM) and Support Vector Regression (SVR) are applied to classify and predict the remaining useful life (RUL) of the monitoring circuit. According to the experimental results, the performance of DBN-SVM exceeds DBN method for feature extraction and classification, and SVR is effective for predicting the degradation.

B
Bao, D., Yang, F., Jiang, Q., Li, S., He, X..  2017.  Block RLS algorithm for surveillance video processing based on image sparse representation. 2017 29th Chinese Control And Decision Conference (CCDC). :2195–2200.

Block recursive least square (BRLS) algorithm for dictionary learning in compressed sensing system is developed for surveillance video processing. The new method uses image blocks directly and iteratively to train dictionaries via BRLS algorithm, which is different from classical methods that require to transform blocks to columns first and then giving all training blocks at one time. Since the background in surveillance video is almost fixed, the residual of foreground can be represented sparsely and reconstructed with background subtraction directly. The new method and framework are applied in real image and surveillance video processing. Simulation results show that the new method achieves better representation performance than classical ones in both image and surveillance video.

C
Wu, X., Chen, Y., Li, S..  2018.  Contactless Smart Card Experiments in a Cybersecurity Course. 2018 IEEE Frontiers in Education Conference (FIE). :1—4.

This Innovate Practice Work in Progress paper is about education on Cybersecurity, which is essential in training of innovative talents in the era of the Internet. Besides knowledge and skills, it is important as well to enhance the students' awareness of cybersecurity in daily life. Considering that contactless smart cards are common and widely used in various areas, one basic and two advanced contactless smart card experiments were designed innovatively and assigned to junior students in 3-people groups in an introductory cybersecurity summer course. The experimental principles, facilities, contents and arrangement are introduced successively. Classroom tests were managed before and after the experiments, and a box and whisker plot is used to describe the distributions of the scores in both tests. The experimental output and student feedback implied the learning objectives were achieved through the problem-based, active and group learning experience during the experiments.

E
Fan, M., Yu, L., Chen, S., Zhou, H., Luo, X., Li, S., Liu, Y., Liu, J., Liu, T..  2020.  An Empirical Evaluation of GDPR Compliance Violations in Android mHealth Apps. 2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE). :253—264.

The purpose of the General Data Protection Regulation (GDPR) is to provide improved privacy protection. If an app controls personal data from users, it needs to be compliant with GDPR. However, GDPR lists general rules rather than exact step-by-step guidelines about how to develop an app that fulfills the requirements. Therefore, there may exist GDPR compliance violations in existing apps, which would pose severe privacy threats to app users. In this paper, we take mobile health applications (mHealth apps) as a peephole to examine the status quo of GDPR compliance in Android apps. We first propose an automated system, named HPDROID, to bridge the semantic gap between the general rules of GDPR and the app implementations by identifying the data practices declared in the app privacy policy and the data relevant behaviors in the app code. Then, based on HPDROID, we detect three kinds of GDPR compliance violations, including the incompleteness of privacy policy, the inconsistency of data collections, and the insecurity of data transmission. We perform an empirical evaluation of 796 mHealth apps. The results reveal that 189 (23.7%) of them do not provide complete privacy policies. Moreover, 59 apps collect sensitive data through different measures, but 46 (77.9%) of them contain at least one inconsistent collection behavior. Even worse, among the 59 apps, only 8 apps try to ensure the transmission security of collected data. However, all of them contain at least one encryption or SSL misuse. Our work exposes severe privacy issues to raise awareness of privacy protection for app users and developers.

F
Zhao, Z., Lu, W., Ma, J., Li, S., Zhou, L..  2018.  Fast Unloading Transient Recovery of Buck Converters Using Series-Inductor Auxiliary Circuit Based Sequence Switching Control. 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC). :1-5.

This paper presents a sequence switching control (SSC) scheme for buck converters with a series-inductor auxiliary circuit, aiming at improving the load transient response. During an unloading transient, the series inductor is controlled as a small equivalent inductance so as to achieve a fast transient regulation. While in the steady state, the series inductor behaves as a large inductance to reduce the output current ripple. Furthermore, on the basis of the proposed variable inductance circuit, a SSC control scheme is proposed and implemented in a digital form. With the proposed control scheme the unloading transient event is divided into n+1 sub-periods, and in each sub-period, the capacitor-charge balance principle is used to determine the switching time sequence. Furthermore, its feasibility is validated in experiment with a 12V-3.3V low-voltage high-current synchronous buck converter. Experimental results demonstrate that the voltage overshoot of the proposed SSC scheme has improved more than 74% compared to that of the time-optimal control (TOC) scheme.

G
Shen, G., Tang, Y., Li, S., Chen, J., Yang, B..  2017.  A General Framework of Hardware Trojan Detection: Two-Level Temperature Difference Based Thermal Map Analysis. 2017 11th IEEE International Conference on Anti-Counterfeiting, Security, and Identification (ASID). :172–178.

With the globalization of integrated circuit design and manufacturing, Hardware Trojan have posed serious threats to the security of commercial chips. In this paper, we propose the framework of two-level temperature difference based thermal map analysis detection method. In our proposed method, thermal maps of an operating chip during a period are captured, and they are differentiated with the thermal maps of a golden model. Then every pixel's differential temperature of differential thermal maps is extracted and compared with other pixel's. To mitigate the Gaussian white noise and to differentiate the information of Hardware Trojan from the information of normal circuits, Kalman filter algorithm is involved. In our experiment, FPGAs configured with equivalent circuits are utilized to simulate the real chips to validate our proposed approach. The experimental result reveals that our proposed framework can detect Hardware Trojan whose power proportion magnitude is 10''3.

M
Li, S., Wang, B..  2017.  A Method for Hybrid Bayesian Network Structure Learning from Massive Data Using MapReduce. 2017 ieee 3rd international conference on big data security on cloud (bigdatasecurity), ieee international conference on high performance and smart computing (hpsc), and ieee international conference on intelligent data and security (ids). :272–276.
Bayesian Network is the popular and important data mining model for representing uncertain knowledge. For large scale data it is often too costly to learn the accurate structure. To resolve this problem, much work has been done on migrating the structure learning algorithms to the MapReduce framework. In this paper, we introduce a distributed hybrid structure learning algorithm by combining the advantages of constraint-based and score-and-search-based algorithms. By reusing the intermediate results of MapReduce, the algorithm greatly simplified the computing work and got good results in both efficiency and accuracy.
O
Li, W., Li, S., Zhang, X., Pan, Q..  2018.  Optimization Algorithm Research of Logistics Distribution Path Based on the Deep Belief Network. 2018 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES). :60-63.

Aiming at the phenomenon that the urban traffic is complex at present, the optimization algorithm of the traditional logistic distribution path isn't sensitive to the change of road condition without strong application in the actual logistics distribution, the optimization algorithm research of logistics distribution path based on the deep belief network is raised. Firstly, build the traffic forecast model based on the deep belief network, complete the model training and conduct the verification by learning lots of traffic data. On such basis, combine the predicated road condition with the traffic network to build the time-share traffic network, amend the access set and the pheromone variable of ant algorithm in accordance with the time-share traffic network, and raise the optimization algorithm of logistics distribution path based on the traffic forecasting. Finally, verify the superiority and application value of the algorithm in the actual distribution through the optimization algorithm contrast test with other logistics distribution paths.

P
Li, S., Yu, M., Yang, C.-S., Avestimehr, A. S., Kannan, S., Viswanath, P..  2020.  PolyShard: Coded Sharding Achieves Linearly Scaling Efficiency and Security Simultaneously. 2020 IEEE International Symposium on Information Theory (ISIT). :203—208.
Today's blockchain designs suffer from a trilemma claiming that no blockchain system can simultaneously achieve decentralization, security, and performance scalability. For current blockchain systems, as more nodes join the network, the efficiency of the system (computation, communication, and storage) stays constant at best. A leading idea for enabling blockchains to scale efficiency is the notion of sharding: different subsets of nodes handle different portions of the blockchain, thereby reducing the load for each individual node. However, existing sharding proposals achieve efficiency scaling by compromising on trust - corrupting the nodes in a given shard will lead to the permanent loss of the corresponding portion of data. In this paper, we settle the trilemma by demonstrating a new protocol for coded storage and computation in blockchains. In particular, we propose PolyShard: "polynomially coded sharding" scheme that achieves information-theoretic upper bounds on the efficiency of the storage, system throughput, as well as on trust, thus enabling a truly scalable system.
Li, S., Wang, F., Shi, T., Kuang, J..  2019.  Probably Secure Multi-User Multi-Keyword Searchable Encryption Scheme in Cloud Storage. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1368-1372.

Searchable encryption server protects privacal data of data owner from leaks. This paper analyzes the security of a multi-user searchable encryption scheme and points out that this scheme does not satisfy the invisibility of trapdoors. In order to improve the security of the original scheme, this paper proposes a probably secure multi-user multi-keyword searchable encryption scheme. New secheme not only ensures the confidentiality of the cipher text keyword, but also does not increase the encryption workload of the data owner when the new data user joins. In the random oracle model, based on the hard problem of decisional Diffie-Hellman, it is proved that the scheme has trapdoor indistinguishability. In the end, obtained by the simulation program to achieve a new computationally efficient communication at low cost.

R
Li, Z., Li, S..  2017.  Random forest algorithm under differential privacy. 2017 IEEE 17th International Conference on Communication Technology (ICCT). :1901–1905.

Trying to solve the risk of data privacy disclosure in classification process, a Random Forest algorithm under differential privacy named DPRF-gini is proposed in the paper. In the process of building decision tree, the algorithm first disturbed the process of feature selection and attribute partition by using exponential mechanism, and then meet the requirement of differential privacy by adding Laplace noise to the leaf node. Compared with the original algorithm, Empirical results show that protection of data privacy is further enhanced while the accuracy of the algorithm is slightly reduced.

Li, Q., Xu, B., Li, S., Liu, Y., Cui, D..  2017.  Reconstruction of measurements in state estimation strategy against cyber attacks for cyber physical systems. 2017 36th Chinese Control Conference (CCC). :7571–7576.

To improve the resilience of state estimation strategy against cyber attacks, the Compressive Sensing (CS) is applied in reconstruction of incomplete measurements for cyber physical systems. First, observability analysis is used to decide the time to run the reconstruction and the damage level from attacks. In particular, the dictionary learning is proposed to form the over-completed dictionary by K-Singular Value Decomposition (K-SVD). Besides, due to the irregularity of incomplete measurements, sampling matrix is designed as the measurement matrix. Finally, the simulation experiments on 6-bus power system illustrate that the proposed method achieves the incomplete measurements reconstruction perfectly, which is better than the joint dictionary. When only 29% available measurements are left, the proposed method has generality for four kinds of recovery algorithms.

Zhang, Z., Wang, Z., Li, S..  2020.  Research and Implementation on an Efficient Public Key Encryption Algorithm with Keyword Search Scheme. 2020 IEEE 5th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA). :314–319.
With the rapid development of network storage service, a number of companies and individuals have stored data on a third-party server. Encryption is an effective means of protecting the confidentiality and privacy of data, but retrieval on the encrypted data is a very difficult task. Thus, searchable encryption has become a hot topic in recent years. The paper first introduces the existing searchable encryption algorithms. Then studies the new PEKS scheme (NPEKS) and analyzes its performance and efficiency. In the end, based on NPEKS, introduced attribute encryption, designed a scheme which is suitable for corporate cloud storage environment. This scheme not only has the advantages of simplicity and efficiency, but also can realize the secret retrieval of the third-party data. Experiments show that comparing with existing PEKS schemes and other improved schemes, this scheme has the advantages of simplicity and high efficiency. In addition, its security is the same as existing PEKS schemes.
S
Williams, N., Li, S..  2017.  Simulating Human Detection of Phishing Websites: An Investigation into the Applicability of the ACT-R Cognitive Behaviour Architecture Model. 2017 3rd IEEE International Conference on Cybernetics (CYBCONF). :1–8.

The prevalence and effectiveness of phishing attacks, despite the presence of a vast array of technical defences, are due largely to the fact that attackers are ruthlessly targeting what is often referred to as the weakest link in the system - the human. This paper reports the results of an investigation into how end users behave when faced with phishing websites and how this behaviour exposes them to attack. Specifically, the paper presents a proof of concept computer model for simulating human behaviour with respect to phishing website detection based on the ACT-R cognitive architecture, and draws conclusions as to the applicability of this architecture to human behaviour modelling within a phishing detection scenario. Following the development of a high-level conceptual model of the phishing website detection process, the study draws upon ACT-R to model and simulate the cognitive processes involved in judging the validity of a representative webpage based primarily around the characteristics of the HTTPS padlock security indicator. The study concludes that despite the low-level nature of the architecture and its very basic user interface support, ACT-R possesses strong capabilities which map well onto the phishing use case, and that further work to more fully represent the range of human security knowledge and behaviours in an ACT-R model could lead to improved insights into how best to combine technical and human defences to reduce the risk to end users from phishing attacks.

T
Nam, C., Li, H., Li, S., Lewis, M., Sycara, K..  2018.  Trust of Humans in Supervisory Control of Swarm Robots with Varied Levels of Autonomy. 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :825—830.

In this paper, we study trust-related human factors in supervisory control of swarm robots with varied levels of autonomy (LOA) in a target foraging task. We compare three LOAs: manual, mixed-initiative (MI), and fully autonomous LOA. In the manual LOA, the human operator chooses headings for a flocking swarm, issuing new headings as needed. In the fully autonomous LOA, the swarm is redirected automatically by changing headings using a search algorithm. In the mixed-initiative LOA, if performance declines, control is switched from human to swarm or swarm to human. The result of this work extends the current knowledge on human factors in swarm supervisory control. Specifically, the finding that the relationship between trust and performance improved for passively monitoring operators (i.e., improved situation awareness in higher LOAs) is particularly novel in its contradiction of earlier work. We also discover that operators switch the degree of autonomy when their trust in the swarm system is low. Last, our analysis shows that operator's preference for a lower LOA is confirmed for a new domain of swarm control.