Visible to the public Biblio

Filters: Author is Jiang, F.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
R
Wang, M., Qu, Z., He, X., Li, T., Jin, X., Gao, Z., Zhou, Z., Jiang, F., Li, J..  2017.  Real time fault monitoring and diagnosis method for power grid monitoring and its application. 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2). :1–6.

In Energy Internet mode, a large number of alarm information is generated when equipment exception and multiple faults in large power grid, which seriously affects the information collection, fault analysis and delays the accident treatment for the monitors. To this point, this paper proposed a method for power grid monitoring to monitor and diagnose fault in real time, constructed the equipment fault logical model based on five section alarm information, built the standard fault information set, realized fault information optimization, fault equipment location, fault type diagnosis, false-report message and missing-report message analysis using matching algorithm. The validity and practicality of the proposed method by an actual case was verified, which can shorten the time of obtaining and analyzing fault information, accelerate the progress of accident treatment, ensure the safe and stable operation of power grid.

Ren, H., Jiang, F., Wang, H..  2017.  Resource allocation based on clustering algorithm for hybrid device-to-device networks. 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). :1–6.
In order to improve the spectrum utilization rate of Device-to-Device (D2D) communication, we study the hybrid resource allocation problem, which allows both the resource reuse and resource dedicated mode to work simultaneously. Meanwhile, multiple D2D devices are permitted to share uplink cellular resources with some designated cellular user equipment (CUE). Combined with the transmission requirement of different users, the optimized resource allocation problem is built which is a NP-hard problem. A heuristic greedy throughput maximization (HGTM) based on clustering algorithm is then proposed to solve the above problem. Numerical results demonstrate that the proposed HGTM outperforms existing algorithms in the sum throughput, CUEs SINR performance and the number of accessed D2D deceives.
T
Xiao, R., Li, X., Pan, M., Zhao, N., Jiang, F., Wang, X..  2020.  Traffic Off-Loading over Uncertain Shared Spectrums with End-to-End Session Guarantee. 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). :1–5.
As a promising solution of spectrum shortage, spectrum sharing has received tremendous interests recently. However, under different sharing policies of different licensees, the shared spectrum is heterogeneous both temporally and spatially, and is usually uncertain due to the unpredictable activities of incumbent users. In this paper, considering the spectrum uncertainty, we propose a spectrum sharing based delay-tolerant traffic off-loading (SDTO) scheme. To capture the available heterogeneous shared bands, we adopt a mesh cognitive radio network and employ the multi-hop transmission mode. To statistically guarantee the end-to-end (E2E) session request under the uncertain spectrum supply, we formulate the SDTO scheme into a stochastic optimization problem, which is transformed into a mixed integer nonlinear programming (MINLP) problem. Then, a coarse-fine search based iterative heuristic algorithm is proposed to solve the MINLP problem. Simulation results demonstrate that the proposed SDTO scheme can well schedule the network resource with an E2E session guarantee.