Visible to the public Biblio

Filters: Author is Li, R.  [Clear All Filters]
Li, R., Wu, B..  2020.  Early detection of DDoS based on φ-entropy in SDN networks. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:731—735.
Software defined network (SDN) is an emerging network architecture. Its control logic and forwarding logic are separated. SDN has the characteristics of centralized management, which makes it easier for malicious attackers to use the security vulnerabilities of SDN networks to implement distributed denial Service (DDoS) attack. Information entropy is a kind of lightweight DDoS early detection method. This paper proposes a DDoS attack detection method in SDN networks based on φ-entropy. φ-entropy can adjust related parameters according to network conditions and enlarge feature differences between normal and abnormal traffic, which can make it easier to detect attacks in the early stages of DDoS traffic formation. Firstly, this article demonstrates the basic properties of φ-entropy, mathematically illustrates the feasibility of φ-entropy in DDoS detection, and then we use Mini-net to conduct simulation experiments to compare the detection effects of DDoS with Shannon entropy.
Li, R., Ishimaki, Y., Yamana, H..  2020.  Privacy Preserving Calculation in Cloud using Fully Homomorphic Encryption with Table Lookup. 2020 5th IEEE International Conference on Big Data Analytics (ICBDA). :315–322.
To protect data in cloud servers, fully homomorphic encryption (FHE) is an effective solution. In addition to encrypting data, FHE allows a third party to evaluate arithmetic circuits (i.e., computations) over encrypted data without decrypting it, guaranteeing protection even during the calculation. However, FHE supports only addition and multiplication. Functions that cannot be directly represented by additions or multiplications cannot be evaluated with FHE. A naïve implementation of such arithmetic operations with FHE is a bit-wise operation that encrypts numerical data as a binary string. This incurs huge computation time and storage costs, however. To overcome this limitation, we propose an efficient protocol to evaluate multi-input functions with FHE using a lookup table. We extend our previous work, which evaluates a single-integer input function, such as f(x). Our extended protocol can handle multi-input functions, such as f(x,y). Thus, we propose a new method of constructing lookup tables that can evaluate multi-input functions to handle general functions. We adopt integer encoding rather than bit-wise encoding to speed up the evaluations. By adopting both permutation operations and a private information retrieval scheme, we guarantee that no information from the underlying plaintext is leaked between two parties: a cloud computation server and a decryptor. Our experimental results show that the runtime of our protocol for a two-input function is approximately 13 minutes, when there are 8,192 input elements in the lookup table. By adopting a multi-threading technique, the runtime can be further reduced to approximately three minutes with eight threads. Our work is more practical than a previously proposed bit-wise implementation, which requires 60 minutes to evaluate a single-input function.
Lu, W., Shu, S., Shi, H., Li, R., Dong, W..  2020.  Synthesizing Secure Reactive Controller for Unmanned Aerial System. 2019 6th International Conference on Dependable Systems and Their Applications (DSA). :419—424.

Complex CPS such as UAS got rapid development these years, but also became vulnerable to GPS spoofing, packets injection, buffer-overflow and other malicious attacks. Ensuring the behaviors of UAS always keeping secure no matter how the environment changes, would be a prospective direction for UAS security. This paper aims at presenting a reactive synthesis-based approach to implement the automatic generation of secure UAS controller. First, we study the operating mechanism of UAS and construct a high-Ievel model consisting of actuator and monitor. Besides, we analyze the security threats of UAS from the perspective of hardware, software and data transmission, and then extract the corresponding specifications of security properties with LTL formulas. Based on the UAS model and security specifications, the controller can be constructed by GR(1) synthesis algorithm, which is a two-player game process between UAV and Environment. Finally, we expand the function of LTLMoP platform to construct the automatons for controller in multi-robots system, which provides secure behavior strategies under several typical UAS attack scenarios.

Zhang, X., Li, R., Cui, B..  2018.  A security architecture of VANET based on blockchain and mobile edge computing. 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN). :258–259.

The development of Vehicular Ad-hoc NETwork (VANET) has brought many conveniences to human beings, but also brings a very prominent security problem. The traditional solution to the security problem is based on centralized approach which requires a trusted central entity which exists a single point of failure problem. Moreover, there is no approach of technical level to ensure security of data. Therefore, this paper proposes a security architecture of VANET based on blockchain and mobile edge computing. The architecture includes three layers, namely perception layer, edge computing layer and service layer. The perception layer ensures the security of VANET data in the transmission process through the blockchain technology. The edge computing layer provides computing resources and edge cloud services to the perception layer. The service layer uses the combination of traditional cloud storage and blockchain to ensure the security of data.

Zhang, X., Li, R., Zhao, W., Wu, R..  2017.  Detection of malicious nodes in NDN VANET for Interest Packet Popple Broadcast Diffusion Attack. 2017 11th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID). :114–118.

As one of the next generation network architectures, Named Data Networking(NDN) which features location-independent addressing and content caching makes it more suitable to be deployed into Vehicular Ad-hoc Network(VANET). However, a new attack pattern is found when NDN and VANET combine. This new attack is Interest Packet Popple Broadcast Diffusion Attack (PBDA). There is no mitigation strategies to mitigate PBDA. In this paper a mitigation strategies called RVMS based on node reputation value (RV) is proposed to detect malicious nodes. The node calculates the neighbor node RV by direct and indirect RV evaluation and uses Markov chain predict the current RV state of the neighbor node according to its historical RV. The RV state is used to decide whether to discard the interest packet. Finally, the effectiveness of the RVMS is verified through modeling and experiment. The experimental results show that the RVMS can mitigate PBDA.

Zhang, X., Li, R., Zhao, H..  2017.  Neighbor-aware based forwarding strategy in NDN-MANET. 2017 11th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID). :125–129.

Named Data Networking (NDN) is a future Internet architecture, NDN forwarding strategy is a hot research topic in MANET. At present, there are two categories of forwarding strategies in NDN. One is the blind forwarding(BF), the other is the aware forwarding(AF). Data packet return by the way that one came forwarding strategy(DRF) as one of the BF strategy may fail for the interruptions of the path that are caused by the mobility of nodes. Consumer need to wait until the interest packet times out to request the data packet again. To solve the insufficient of DRF, in this paper a Forwarding Strategy, called FN based on Neighbor-aware is proposed for NDN MANET. The node maintains the neighbor information and the request information of neighbor nodes. In the phase of data packet response, in order to improve request satisfaction rate, node specifies the next hop node; Meanwhile, in order to reduce packet loss rate, node assists the last hop node to forward packet to the specific node. The simulation results show that compared with DRF and greedy forwarding(GF) strategy, FN can improve request satisfaction rate when node density is high.

Zhang, J., Tang, Z., Li, R., Chen, X., Gong, X., Fang, D., Wang, Z..  2017.  Protect Sensitive Information against Channel State Information Based Attacks. 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). 2:203–210.

Channel state information (CSI) has been recently shown to be useful in performing security attacks in public WiFi environments. By analyzing how CSI is affected by the finger motions, CSI-based attacks can effectively reconstruct text-based passwords and locking patterns. This paper presents WiGuard, a novel system to protect sensitive on-screen gestures in a public place. Our approach carefully exploits the WiFi channel interference to introduce noise into the attacker's CSI measurement to reduce the success rate of the attack. Our approach automatically detects when a CSI-based attack happens. We evaluate our approach by applying it to protect text-based passwords and pattern locks on mobile devices. Experimental results show that our approach is able to reduce the success rate of CSI attacks from 92% to 42% for text-based passwords and from 82% to 22% for pattern lock.

Liu, Y., Li, R., Liu, X., Wang, J., Tang, C., Kang, H..  2017.  Enhancing Anonymity of Bitcoin Based on Ring Signature Algorithm. 2017 13th International Conference on Computational Intelligence and Security (CIS). :317–321.

Bitcoin is a decentralized digital currency, widely used for its perceived anonymity property, and has surged in popularity in recent years. Bitcoin publishes the complete transaction history in a public ledger, under pseudonyms of users. This is an alternative way to prevent double-spending attack instead of central authority. Therefore, if pseudonyms of users are attached to their identities in real world, the anonymity of Bitcoin will be a serious vulnerability. It is necessary to enhance anonymity of Bitcoin by a coin mixing service or other modifications in Bitcoin protocol. But in a coin mixing service, the relationship among input and output addresses is not hidden from the mixing service provider. So the mixing server still has the ability to track the transaction records of Bitcoin users. To solve this problem, We present a new coin mixing scheme to ensure that the relationship between input and output addresses of any users is invisible for the mixing server. We make use of a ring signature algorithm to ensure that the mixing server can't distinguish specific transaction from all these addresses. The ring signature ensures that a signature is signed by one of its users in the ring and doesn't leak any information about who signed it. Furthermore, the scheme is fully compatible with existing Bitcoin protocol and easily to scale for large amount of users.

Meng, X., Zhao, Z., Li, R., Zhang, H..  2017.  An intelligent honeynet architecture based on software defined security. 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). :1–6.
Honeynet is deployed to trap attackers and learn their behavior patterns and motivations. Conventional honeynet is implemented by dedicated hardware and software. It suffers from inflexibility, high CAPEX and OPEX. There have been several virtualized honeynet architectures to solve those problems. But they lack a standard operating environment and common architecture for dynamic scheduling and adaptive resource allocation. Software Defined Security (SDS) framework has a centralized control mechanism and intelligent decision making ability for different security functions. In this paper, we present a new intelligent honeynet architecture based on SDS framework. It implements security functions over Network Function Virtualization Infrastructure (NFVI). Under uniform and intelligent control, security functional modules can be dynamically deployed and collaborated to complete different tasks. It migrates resources according to the workloads of each honeypot and power off unused modules. Simulation results show that intelligent honeynet has a better performance in conserving resources and reducing energy consumption. The new architecture can fit the needs of future honeynet development and deployment.